Arabic
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

Training Effects Following Resection Surgery in Patients With Lung Cancer

يمكن للمستخدمين المسجلين فقط ترجمة المقالات
الدخول التسجيل فى الموقع
يتم حفظ الارتباط في الحافظة
الحالةمنجز
الرعاة
Parc de Salut Mar
المتعاونون
Hospital de Sant Pau

الكلمات الدالة

نبذة مختصرة

The purpose of this study is to determine the potential benefits resulting from a specific training on exercise tolerance and muscle function at the medium and long-time, as well as study its effects on plasmatic mediators (sMICA, IGF-I and IGFBP-3) in patients with lung cancer following resection surgery.

وصف

Surgical treatment of lung cancer (LC) leads to peripheral and respiratory muscle dysfunction (Mdys) with exercise limitation. This characteristic feature might be generated, not only for a reduced lung function, but also by deconditioning as well as respiratory and peripheral muscle dysfunction. It remains unknown the potential benefits resulting from a specific training and its effects on plasmatic mediators.

Chronic diseases are the leading cause of morbidity and mortality worldwide and is known that regular exercise has a beneficial effect on most of them. Many studies have shown the benefit of exercise in patients diagnosed with cancer, especially breast and colorectal cancer, even during active phases of specific treatment, however few studies refers to possible benefit of exercise in patients with lung cancer following surgical resection. Lung cancer is one of the most common cancers in Spain, the second in the general population and the first if we refer exclusively to the male population. Not only it is a common type of cancer, but also presents a high mortality with a survival rate at 5 years of approximately 12%. However, survival improves significantly in stage I (60-80% at 5 years) and progressively worse until stage IV (<5% at 5 years). Surgery is the treatment of choice for lung cancer in stages I and IIa. Despite the good results in terms of survival, it is not free of side effects. Depending on the extent of lung resection, it may result in functional limitations and impact on the patients' quality of life. Pulmonary lobectomy entails a significant reduction of the functional reserve: impaired lung function (FEV1 of 15%) and reduced exercise capacity (16% in the shuttle test). In contrast, in the pneumonectomy, reduced pulmonary function is disproportionately higher (FEV1 of 35%) in comparison with the exercise limitation (23%). To date we have no knowledge of studies that have specifically evaluated the effects of exercise training in these patients.

Dysfunction of the diaphragm and other respiratory muscles, prevalent in COPD (chronic obstructive pulmonary disease) patients, has important clinical implications. It associates with susceptibility to hypercapnic ventilatory failure, ineffective cough, and even higher incidence of repeated hospital admissions and mortality. Therefore, respiratory muscle weakness described in some patients justifies the need to train respiratory muscles because there is no general exercise (bicycle, legs, arms) able to induce an overload enough to achieve training effect on respiratory muscles. Since a large proportion of lung cancer patients also suffer from COPD, endurance and strength of respiratory muscles are expected to be reduced. Moreover, after lobectomy patients have some degree of peripheral muscle deconditioning, which could be linked to the loss of reserve function, but also the relative rest. Although muscle training has been successfully used to restore function in patients with various chronic diseases and frailty, there is little evidence on the beneficial effects of muscle training in patients after lung cancer surgery.

Many studies have related the insulin-like growth factor I (IGF-I) and its major regulatory proteins, Insulin-like growth factor binding protein (IGFBP-3) with various malignancies, including lung cancer. In healthy subjects with sedentary lifestyle, caloric diet leads to obesity and alterations of hormonal, metabolic and inflammatory modulate carcinogenesis. These disorders include chronic hyperinsulinemia, elevated plasma IGF-I, plasma enhanced bioavailability and increased steroid sex hormones of systemic inflammation markers. Physical exercise, in addition to its cardiovascular effects and/or muscular strength and endurance produces a response on plasmatic levels of IGF-I and IGFBP-3. This variability has been justified, in most cases, depending on type, intensity and/or duration of the exercise performed.

تواريخ

آخر التحقق: 01/31/2016
تم الإرسال لأول مرة: 01/09/2013
تم إرسال التسجيل المقدر: 01/15/2013
أول نشر: 01/17/2013
تم إرسال آخر تحديث: 02/14/2016
آخر تحديث تم نشره: 02/16/2016
تاريخ بدء الدراسة الفعلي: 10/31/2012
تاريخ الإنجاز الأساسي المقدر: 11/30/2015
التاريخ المتوقع لانتهاء الدراسة: 01/31/2016

حالة أو مرض

Lung Cancer

التدخل / العلاج

Behavioral: Aerobic and muscle resistance training

مرحلة

-

مجموعات الذراع

ذراعالتدخل / العلاج
Experimental: Aerobic and muscle resistance training
Behavioral: Aerobic and muscle resistance training
After having been allocated randomly to one of the two groups, patients of Intervention Group are encouraged to follow a training program (aerobic and endurance muscle training) during 8 weeks.
No Intervention: Usual care group
All patients (intervention and usual care group) are patients with lung cancer who underwent a resection surgery.

معايير الأهلية

الأعمار المؤهلة للدراسة 18 Years إلى 18 Years
الأجناس المؤهلة للدراسةAll
يقبل المتطوعين الأصحاءنعم
المعايير

Inclusion Criteria:

- 1) age under 80 years.

- 2) patients with lung cancer stage I or II with surgery indication.

- 3) ability to understand and accept the trial procedures and to sign an informed consent.

Exclusion Criteria:

- 1) Serious cardiovascular, neuromuscular or metabolic conditions that could interfere with the results and/or interfere with the measurements.

- 2) complementary cancer treatment pre-or post-surgery.

- 3) treatment with drugs with potential effect on muscle structure and function (steroids, anabolic steroids, thyroid hormones and immunosuppressive).

- 4) cognitive or language barriers that impede the realization of the objective of the study and / or collaboration in the exercise program.

النتيجة

مقاييس النتائج الأولية

1. Peak oxygen uptake (VO2peak) determined by a cardiopulmonary effort test (CPET) [3 times a week during 8 weeks]

VO2peak is determined by a standardised incremental exercise test. Subjects are instructed to pedal in an electrically braked cycloergometer and are encouraged to continue until they are not able to sustain the target frequency (55-65 rpm). Loads are increased by 25 watts every 2 minutes. Different ventilatory, cardiovascular, metabolic and oxygenation variables are monitored throughout the test using a calibrated exercise system, a standard electrocardiograph, an automatic sphygmomanometer and a finger probe connected to the aforementioned digital recorder. Normal values published by Jones et al are used as the reference for physiological parameters, except for the maximum heart rate which was calculated from a standard equation published by Wassermann et al.

مقاييس النتائج الثانوية

1. Other effort parameters determined by the CPET [Before training (8-10 weeks post-surgery) and after (8-week training, 16-18 weeks post-surgery)]

2. Peripheral muscle strength [Before training (8-10 weeks post-surgery) and after (8-week training, 16-18 weeks post-surgery)]

3. Plasmatic levels of sMICA, IGF-I, IGFBP-3. [Before training (8-10 weeks post-surgery) and after (8-week training, 16-18 weeks post-surgery)]

انضم إلى صفحتنا على الفيسبوك

قاعدة بيانات الأعشاب الطبية الأكثر اكتمالا التي يدعمها العلم

  • يعمل في 55 لغة
  • العلاجات العشبية مدعومة بالعلم
  • التعرف على الأعشاب بالصورة
  • خريطة GPS تفاعلية - ضع علامة على الأعشاب في الموقع (قريبًا)
  • اقرأ المنشورات العلمية المتعلقة ببحثك
  • البحث عن الأعشاب الطبية من آثارها
  • نظّم اهتماماتك وابقَ على اطلاع دائم بأبحاث الأخبار والتجارب السريرية وبراءات الاختراع

اكتب أحد الأعراض أو المرض واقرأ عن الأعشاب التي قد تساعد ، واكتب عشبًا واطلع على الأمراض والأعراض التي تستخدم ضدها.
* تستند جميع المعلومات إلى البحوث العلمية المنشورة

Google Play badgeApp Store badge