Glycogen synthase kinase 3 inhibitor attenuates endotoxin-induced liver injury.
Açar sözlər
Mücərrəd
OBJECTIVE
Endotoxin (lipopolysaccharide, LPS)-induced acute liver injury was attenuated by endotoxin tolerance (ET), which is characterized by phosphatidylinositol 3-kinase pathway/Akt signaling. Glycogen synthase kinase 3 (GSK-3) acts downstream of phosphatidylinositol 3-kinase pathway/Akt and GSK-3 inhibitor protects against organic injury. This study evaluates the hypothesis that ET attenuated LPS-induced liver injury through inhibiting GSK-3 functional activity and downstream signaling.
METHODS
Sprague-Dawley rats with or without low-dose LPS pretreatment were challenged with or without large dose of LPS and subsequently received studies. Serum tumor necrosis factor-alpha, interleukin-10, alanine aminotransferase, lactate dehydrogenase, and total bilirubin levels were analyzed, morphology of liver tissue was performed, glycogen content, myeloperoxidase content, phagocytosis activity of Kupffer cells, and the expression and inhibitory phosphorylation as well as kinase activity of GSK-3 were examined. Survival after LPS administration was also determined.
RESULTS
LPS induced significant increases of serum TNF-α, alanine aminotransferase, lactate dehydrogenase, and total bilirubin (P < 0.05), which were companied by obvious alterations in liver: the injury of liver tissue, the decrease of glycogen, the infiltration of neutrophils, and the enhancement of phagocytosis of Kupffer cells (P < 0.05). LPS pretreatment significantly attenuated these alterations, promoted the inhibitory phosphorylation of GSK-3 and inhibited its kinase activity, and improved the survival rate (P < 0.05).
CONCLUSIONS
ET attenuated LPS-induced acute liver injury through inhibiting GSK-3 functional activity and its downstream signaling.