Idiosyncratic NSAID drug induced oxidative stress.
Açar sözlər
Mücərrəd
Many idiosyncratic non-steroidal anti-inflammatory drugs (NSAIDs) cause GI, liver and bone marrow toxicity in some patients which results in GI bleeding/ulceration/fulminant hepatic failure/hepatitis or agranulocytosis/aplastic anemia. The toxic mechanisms proposed have been reviewed. Evidence is presented showing that idiosyncratic NSAID drugs form prooxidant radicals when metabolised by peroxidases known to be present in these tissues. Thus GSH, NADH and/or ascorbate were cooxidised by catalytic amounts of NSAIDs and hydrogen peroxide in the presence of peroxidase. During GSH and NADH cooxidation, oxygen uptake and activation occurred. Furthermore the formation of NSAID oxidation products was prevented during the cooxidation indicating that the cooxidation involved redox cycling of the first formed NSAID radical product. The order of prooxidant catalytic effectiveness of fenamate and arylacetic acid NSAIDs was mefenamic acid>tolfenamic acid>flufenamic acid, meclofenamic acid or diclofenac. Diphenylamine, a common moiety to all of these NSAIDs was a more active prooxidant for NADH and ascorbate cooxidation than these NSAIDs which suggests that oxidation of the NSAID diphenylamine moiety to a cation and/or nitroxide radical was responsible for the NSAID prooxidant activity. The order of catalytic effectiveness found for sulfonamide derivatives was sulfaphenazole>sulfisoxazolez.Gt;dapsone>sulfanilic acid>procainamide>sulfamethoxazole>sulfadiazine>sulfadimethoxine whereas sulfanilamide, sulfapyridine or nimesulide had no prooxidant activity. Although indomethacin had little prooxidant activity, its major in vivo metabolite, N-deschlorobenzoyl indomethacin had significant prooxidant activity. Aminoantipyrine the major in vivo metabolite of aminopyrine or dipyrone was also more prooxidant than the parent drugs. It is hypothesized that the NSAID radicals and/or the resulting oxidative stress initiates the cytotoxic processes leading to idiosyncratic toxicity.