Purified scrapie prions resist inactivation by UV irradiation.
Açar sözlər
Mücərrəd
The development of effective purification protocols has permitted evaluation of the resistance of isolated scrapie prions to inactivation by UV irradiation at 254 nm. Prions were irradiated on ice with doses of UV light ranging up to 120,000 J/m2. UV dosimetry experiments, performed with Saccharomyces cerevisiae plasmid DNA or eucaryotic cells, indicated that under these experimental conditions an incident UV dose of 10 J/m2 formed 2 thymine dimers per 5.1 X 10(6) daltons of eucaryotic cell DNA. The D37 values for scrapie prions ranged from 17,000 to 22,000 J/m2; D37 values were also determined for virus, viroid, and enzyme controls. The number of pyrimidine dimers formed was correlated with the D37 values obtained for irradiated prions and target nucleic acids. The D37 value for bacteriophage M13, 6.5 J/m2, occurred at a dose that would form 0.56 dimers per target genome; the D37 for potato spindle tuber viroid, 4,800 J/m2, occurred at a dose that would form about 24 dimers per target viroid. The D37 value for an EcoRI restriction site, a target of 12 bases, occurred at a dose that would correspond to the formation of 0.89 thymine dimers per target site. The D37 value for prions occurred at a dose that would form 1 dimer in every 4 bases of single-stranded target nucleic acid. If the putative scrapie nucleic acid were double-stranded and readily repairable after UV damage, then the prion D37 value could reflect a nucleic acid molecule of 30 to 45 base pairs. While the D37 value for prions fell within the range of pure protein targets, our experiments cannot eliminate the possibility that a prion contains a small, highly protected nucleic acid molecule.