Suction generation in white-spotted bamboo sharks Chiloscyllium plagiosum.
Açar sözlər
Mücərrəd
After the divergence of chondrichthyans and teleostomes, the structure of the feeding apparatus also diverged leading to alterations in the suction mechanism. In this study we investigated the mechanism for suction generation during feeding in white-spotted bamboo sharks, Chiloscyllium plagiosum and compared it with that in teleosts. The internal movement of cranial elements and pressure in the buccal, hyoid and pharyngeal cavities that are directly responsible for suction generation was quantified using sonomicrometry and pressure transducers. Backward stepwise multiple linear regressions were used to explore the relationship between expansion and pressure, accounting for 60-96% of the variation in pressure among capture events. The progression of anterior to posterior expansion in the buccal, hyoid and pharyngeal cavities is accompanied by the sequential onset of subambient pressure in these cavities as prey is drawn into the mouth. Gape opening triggers the onset of subambient pressure in the oropharyngeal cavities. Peak gape area coincides with peak subambient buccal pressure. Increased velocity of hyoid area expansion is primarily responsible for generating peak subambient pressure in the buccal and hyoid regions. Pharyngeal expansion appears to function as a sink to receive water influx from the mouth, much like that of compensatory suction in bidirectional aquatic feeders. Interestingly, C. plagiosum generates large suction pressures while paradoxically compressing the buccal cavity laterally, delaying the time to peak pressure. This represents a fundamental difference from the mechanism used to generate suction in teleost fishes. Interestingly, pressure in the three cavities peaks in the posterior to anterior direction. The complex shape changes that the buccal cavity undergoes indicate that, as in teleosts, unsteady flow predominates during suction feeding. Several kinematic variables function together, with great variation over long gape cycles to generate the low subambient pressures used by C. plagiosum to capture prey.