Azerbaijani
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Controlled Release 2020-Jan

A conductive cell-delivery construct as a bioengineered patch that can improve electrical propagation and synchronize cardiomyocyte contraction for heart repair.

Yalnız qeydiyyatdan keçmiş istifadəçilər məqalələri tərcümə edə bilərlər
Giriş / Qeydiyyatdan keçin
Bağlantı panoya saxlanılır
Shanglin Chen
Meng-Hsuan Hsieh
Shu-Hong Li
Jun Wu
Richard Weisel
Yen Chang
Hsing-Wen Sung
Ren-Ke Li

Açar sözlər

Mücərrəd

Cardiac tissue engineering is of particular importance in the combination of contracting cells with a biomaterial scaffold, which serves as a cell-delivery construct, to replace cardiomyocytes (CMs) that are lost as a result of an infarction, to restore heart function. However, most biomaterial scaffolds are nonconductive and may delay regional conduction, potentially causing arrhythmias. In this study, a conductive CM-delivery construct that consists of a gelatin-based gelfoam that is conjugated with a self-doped conductive polymer (poly-3-amino-4-methoxybenzoic acid, PAMB) is proposed as a cardiac patch (PAMB-Gel patch) to repair an infarcted heart. A nonconductive plain gelfoam (Gel patch) is used as a control. The electrical conductivity of the PAMB-Gel patch is approximately 30 times higher than that of the Gel patch; as a result, the conductive PAMB-Gel patch can substantially increase electrical conduction between distinct clusters of beating CMs, facilitating their synchronous contraction. In vivo epicardial implantation of the PAMB-Gel patch that is seeded with CMs (the bioengineered patch) in infarcted rat hearts can significantly enhance electrical activity in the fibrotic tissue, improving electrical impulse propagation and synchronizing CM contraction across the scar region, markedly reducing its susceptibility to cardiac arrhythmias. Echocardiography shows that the bioengineered conductive patch has an important role in the restoration of cardiac function, perhaps owing to the synergistic effects of its conductive construct and the synchronously beating CMs. These experimental results reveal that the as-proposed bioengineered conductive patch has great potential for repairing injured cardiac tissues.

Facebook səhifəmizə qoşulun

Elm tərəfindən dəstəklənən ən tam dərman bitkiləri bazası

  • 55 dildə işləyir
  • Elm tərəfindən dəstəklənən bitki mənşəli müalicələr
  • Təsvirə görə otların tanınması
  • İnteraktiv GPS xəritəsi - yerdəki otları etiketləyin (tezliklə)
  • Axtarışınızla əlaqəli elmi nəşrləri oxuyun
  • Təsirlərinə görə dərman bitkilərini axtarın
  • Maraqlarınızı təşkil edin və xəbər araşdırmaları, klinik sınaqlar və patentlər barədə məlumatlı olun

Bir simptom və ya bir xəstəlik yazın və kömək edə biləcək otlar haqqında oxuyun, bir ot yazın və istifadə olunan xəstəliklərə və simptomlara baxın.
* Bütün məlumatlar dərc olunmuş elmi araşdırmalara əsaslanır

Google Play badgeApp Store badge