12 nəticələr
Endogenous brassinosteroids in the shoots of Arabidopsis thaliana were investigated. Castasterone, 6-deoxocastasterone, typhasterol and 6-deoxotyphasterol were identified by GC-MS. The co-occurrence of 6-deoxo-brassinosteroids and 6-oxo-brassinosteroids suggests that there are both early and late
To gain a better understanding of brassinosteroid biosynthesis, the levels of brassinosteroids and sterols related to brassinolide biosynthesis in Arabidopsis, pea, and tomato plants were quantified by gas chromatography-selected ion monitoring. In these plants, the late C-6 oxidation pathway was
Brassinosteroids (BRs) are naturally occurring steroidal hormones that play diverse roles in various processes during plant growth and development. Thus, genetic manipulation of endogenous BR levels might offer a way of improving the agronomic traits of crops, including plant architecture and stress
From the seeds and siliques of Arabidopsis thaliana, six brassinosteroids, brassinolide, castasterone, typhasterol, 6-deoxocastasterone, 6-deoxotyphasterol and 6-deoxoteasterone, were identified by GC-mass spectrometry or GC-selected ion monitoring. As the occurrence of castasterone, typhasterol,
C-6 oxidation genes play a key role in the regulation of biologically active brassinosteroid (BR) levels in the plant. They control BR activation, which involves the C-6 oxidation of 6-deoxocastasterone (6-DeoxoCS) to castasterone (CS) and in some cases the further conversion of CS to brassinolide
Brassinosteroids (BRs) are essential for various aspects of plant development. Cellular BR homeostasis is critical for proper growth and development of plants; however, its regulatory mechanism remains largely unknown. BAT1 (BR-related acyltransferase 1), a gene encoding a putative acyltransferase,
Brassinosteroids (BRs) affect a wide range of developmental processes in plants and compromised production or signalling of BRs causes severe growth defects. To identify new regulators of plant organ growth, we searched the Arabidopsis FOX (Full-length cDNA Over-eXpressor gene) collection for
Our previous studies on the endogenous brassinosteroids (BRs) in Arabidopsis have provided suggestive evidence for the operation of the early C6-oxidation and the late C6-oxidation pathways, leading to brassinolide (BL) in Arabidopsis. However, to date the in vivo operation of these pathways has not
Brassinosteroids (BRs) are plant steroidal hormones that regulate plant growth and development. An Arabidopsis dwarf mutant, shrink1-D (shk1-D), was isolated and the phenotype was shown to be caused by activation of the CYP72C1 gene. CYP72C1 is a member of the cytochrome P450 monooxygenase gene
Brassinosteroids (BRs) are steroidal plant hormones that are essential for growth and development. It has been proposed that BRs are synthesized via two parallel pathways, the early and late C-6 oxidation pathways according to the C-6 oxidation status. The tomato (Lycopersicon esculentum) Dwarf gene
Brassinosteroids are steroidal hormones essential for the growth and development of plants. Brassinolide, the most biologically active brassinosteroid, has a seven-membered lactone ring that is formed by a Baeyer-Villiger oxidation of its immediate precursor castasterone. Despite its potential key
Brassinosteroids (BRs) play essential roles in regulating various aspects of plant growth and development and in responding to diverse environmental cues, and their metabolism is an important way to regulate their homeostasis in plants. Here, we identified a dominant mutant, dwarf and round leaf-1