Səhifə 1 dan 18 nəticələr
Bioenergetic profiling of tumors is a new challenge of cancer research and medicine as therapies are currently being developed. Meanwhile, methodological means must be proposed to gather information on tumor metabolism in order to adapt these potential therapies to the bioenergetic specificities of
Macromolecule-antitumour drug conjugates can reach tumour sites specifically via the enhanced permeability and retention (EPR) effect. It is desirable to release the drug efficiently from the conjugate at acidic pH in the tumour tissue or in the endosomes of cancer cells. In this study, we attempted
Cancer is one of the most fatal diseases in the world and it has been years that finding new drugs and chemotherapeutic techniques with lowest side effects become one of the most important challenging matters needs really hard efforts. Chlorambucil (CBL), an ancient direct-acting alkylating
Erlotinib is a BCS (biopharmaceutical classification system) class II drug used for the treatment of non-small cell lung cancer. There is an urgent need to obtain new solid forms of higher solubility to improve the bioavailability of the API (active pharmaceutical ingredient). In this context,
Multidrug resistance (MDR) is the major obstacle for chemotherapy. In a previous study, we have successfully synthesized a novel doxorubicin (DOX) derivative modified by triphenylphosphonium (TPP) to realize mitochondrial delivery of DOX and showed the potential of this compound to overcome DOX
Tumor-targeted delivery of photothermal agent and controlled release of concomitant chemotherapeutic drug are two key factors for combined photothermal chemotherapy. Herein, we developed a pH/near-infrared (NIR) dual-triggered drug release nanoplatform based on hyaluronic acid (HA)-functionalized
Breast cancer is the leading cause of cancer mortality in women worldwide. To overcome the toxic side effects and multidrug resistance (MDR) during doxorubicin (DOX) chemotherapy, an arginine-glycine-aspartic (RGD) tripeptide modified, pH-sensitive solid lipid nanoparticles (SLNs) is employed in
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related mortality in China. This study aimed to develop a hyaluronic acid (HA) decorated, pH sensitive lipid-polymer hybrid nanoparticles (LPH NPs) to co-deliver erlotinib (ERL) and bevacizumab (BEV) (HA-ERL/BEV-LPH NPs) for targeting
BACKGROUND
Carboplatin, an antineoplastic agent, binds DNA and enhances radiotherapy (RT) effects. Carboplatin-loaded hydrogel (oxidized hyaluronic acid/adipic acid dihydrazide) enables the sustained drug release and facilitates the synergistic effect with RT.
OBJECTIVE
We investigated the
Novel reductively degradable α-amino acid-based poly(ester amide)-graft-galactose (SSPEA-Gal) copolymers were designed and developed to form smart nano-vehicles for active hepatoma-targeting doxorubicin (DOX) delivery. SSPEA-Gal copolymers were readily synthesized via solution polycondensation
Phenol ranked 38th in production among U.S. chemicals in 1978 with annual production of 2.38 billion pounds. Approximately 90% of the phenol produced is used in the manufacture of phenolic (phenol formaldehyde) resins, caprolactam, bisphenol A, alkyl phenol, and adipic acid. The remainder of the
Hyaluronic acid is a naturally ionic polysaccharide with cancer cell selectivity. It is an ideal candidate material for delivery of anticancer agents. In this study, hyaluronic acid (HA) micro-hydrogel loaded with anticancer drugs was prepared by the biotin-avidin system approach. Firstly, carboxyl
In this study, we developed curcumin-encapsulated hyaluronic acid-polylactide nanoparticles (CEHPNPs) to be used for liver fibrosis amelioration. CD44, the hyaluronic acid (HA) receptor, is upregulated on the surface of cancer cells and on activated hepatic stellate cells (aHSCs) rather than normal
Heparosan is a natural precursor of heparin biosynthesis in mammals. It is stable in blood circulation but can be degraded in lysosomes, showing good biocompatibility and long circulation features. So heparosan can be designed as anticancer drug carriers to increase tumor selectivity and improve the
Doxorubicin (DOX)-loaded nanoparticles (NPs) based on interconnected hyaluronic acid-ceramide (HACE) structure were fabricated and their anti-tumor efficacy was evaluated in vitro. Interconnected HACE was synthesized by cross-linking HACE with adipic acid dihydrazide (ADH) and its synthesis was