Səhifə 1 dan 24 nəticələr
To date, anticonvulsant effects of the plant cannabinoid, cannabidivarin (CBDV), have been reported in several animal models of seizure. However, these behaviourally observed anticonvulsant effects have not been confirmed at the molecular level. To examine changes to epilepsy-related gene expression
Cannabidivarin (CBDV) and cannabidiol (CBD) have recently emerged among cannabinoids for their potential antiepileptic properties, as shown in several animal models. We report the case of a patient affected by symptomatic partial epilepsy who used cannabis as self-medication after the failure of
Over the past decade there has been an increasing interest in using cannabinoids to treat a range of epilepsy syndromes following reports of some remarkable responses in individual patients. The situation is complicated by the fact that these agents do not appear to work via their attachment to
A sensitive, robust method was developed and validated to quantitate 13 major natural cannabinoid parent and metabolite compounds in human plasma at or below 0.5 ng/mL.A liquid chromatography tandem mass spectrometry method was developed and validated to BACKGROUND
The anticonvulsant activity of cannabinoids attracted much attention in the last decade. Cannabinoids that are currently investigated with the intention of making them drugs for the treatment of epilepsy are cannabidiol, cannabidivarin, Δ9-tetrahydrocannabivarin, and
BACKGROUND
Epilepsy is a neurological disorder that significantly impacts the quality of life of affected persons. Despite advances in research, nearly a third of patients have refractory or pharmacoresistant epilepsy. Even though numerous antiepileptic drugs (AEDs) have been approved over the past
OBJECTIVE
Antiepileptic drugs often produce serious adverse effects, and many patients do not respond to them properly. Phytocannabinoids produce anticonvulsant effects in preclinical and preliminary human studies, and appear to produce fewer adverse effects than available antiepileptic drugs. The
OBJECTIVE
Epilepsy is the most prevalent neurological disease and is characterized by recurrent seizures. Here, we investigate (i) the anticonvulsant profiles of cannabis-derived botanical drug substances (BDSs) rich in cannabidivarin (CBDV) and containing cannabidiol (CBD) in acute in vivo seizure
The use of cannabis products in the treatment of epilepsy has long been of interest to researchers and clinicians alike; however, until recently very little published data were available to support its use. This article summarizes the available scientific data of pharmacology from human and animal
A significant proportion of neonatal and childhood seizures are poorly controlled by existing anti-seizure drugs (ASDs), likely due to prominent differences in ionic homeostasis and network connectivity between the immature and mature brain. In addition to the poor efficacy of current ASDs, many
Epilepsy is the most common neurological disorder, with over 50 million people worldwide affected. Recent evidence suggests that the transient receptor potential cation channel subfamily V member 1 (TRPV1) may contribute to the onset and progression of some forms of epilepsy. Since the two
OBJECTIVE
Phytocannabinoids in Cannabis sativa have diverse pharmacological targets extending beyond cannabinoid receptors and several exert notable anticonvulsant effects. For the first time, we investigated the anticonvulsant profile of the phytocannabinoid cannabidivarin (CBDV) in vitro and in in
Cannabidiol (CBD) and cannabidivarin (CBDV) are natural cannabinoids which are consumed in increasing amounts worldwide in cannabis extracts, as they prevent epilepsy, anxiety, and seizures. It was claimed that they may be useful in cancer therapy and have anti-inflammatory properties. Adverse
Cannabidiol (CBD) is one of the prominent phytocannabinoids found in Cannabis sativa, differentiating from Δ9-tetrahydrocannabinol (THC) for its non-intoxicating profile and its antianxiety/antipsychotic effects. CBD is a multi-target drug whose anti-convulsant properties are
Current antiepileptic drugs (AEDs) are undesirable for many reasons including the inability to reduce seizures in certain types of epilepsy, such as Dravet syndrome (DS) where in one-third of patients does not respond to current AEDs, and severe adverse effects that are frequently experienced by