Səhifə 1 dan 22 nəticələr
The present study was performed to investigate the potential role of Danshensu in therapeutic angiogenesis in ischemic myocardium and endothelial progenitor cells (EPCs) function. The rat model of myocardial infarction (MI) injury was induced by left anterior descending coronary artery ligation for
BACKGROUND
Danshensu is an active water-soluble component from Salvia Miltiorrhiza, which has been demonstrated holding multiple mechanisms for the regulation of cardiovascular system. However, the relative contribution of danshensu to its multiple cardiovascular activities remains largely
The synthesis and bioactivities of Danshensu derivatives (R)-methyl 2-acetoxy-3-(3,4-diacetoxyphenyl)propanoate (1a), (R)-methyl 2-acetoxy-3-(3,4-methylenedioxyphenyl)propanoate (1b) and their racemates 7 and 10 were reported in this paper. These derivatives were designed to improve their chemical
In this work, we explored the protective effect of DT-018, a danshensu and tetramethylpyrazine conjugate, on mitochondrial injury induced by tert-butylhydroperoxide (t-BHP) and its possible mechanisms of action. DT-018 effectively quenched intracellular and mitochondrial reactive oxygen species
Background: Danshensu (DSS) possesses unique bioactivity on the cardiovascular system. However, there is a lack of systematical summary of DSS for acute myocardial ischemia injury and no quality assessment tool for the systematical review of cell experiments. Here, we aimed to assess the
In clinical practice, the traditional Chinese medicinal herbs, Radix Salvia Miltiorrhiza and Carthamus tinctorius L., are usually prescribed in combination due to their significant cardioprotective effects. However, the mechanisms responsible for these combined effects remain unknown. Thus, in this
OBJECTIVE
To investigate the protective effect of edaravone and danshensu conjugate (IM-009) on focal cerebral ischemia-reperfusion injury in rats and its underlying mechanisms.
METHODS
Rats were randomly assigned into 6 groups, including a sham group, a model group, an edaravone-treated group, a
Novel Danshensu derivatives (3-8) were designed and synthesized to improve bioactivity based on the strategy of 'medicinal chemical hybridization'. Our previous studies indicated that these compounds exhibited noticeable cardioprotective activities. Here, we investigate whether these novel Danshensu
Sodium danshensu (SDSS), the sodium salt of danshensu (DSS), has the same pharmacological effects as DSS. In the present study, we aimed to investigate the neuroprotective effect and possible mechanism of SDSS against cerebral ischemic/reperfusion injury. Sprague-Dawley rats were randomly divided
BACKGROUND
Danshensu (3-(3,4-dihydroxyphenyl) lactic acid, DSS) is one of the most promising cardioprotective components in the root of Salvia miltiorrhiza but its poor chemical stability poses hurdles in its therapeutic development. It is therefore desirable to enhance the stability of DSS by
Ischemic heart diseases are the leading cause of death in both developed and developing countries over the past decades. The aim of this study was to investigate the cardioprotective effects of the complex preparation (called Shenge), made of puerarin and Danshensu, on acute ischemic myocardial
BACKGROUND
Traditional Chinese medicinal herbs Cortex Moutan and Radix Salviae Milthiorrhizaeare are prescribed together for their putative cardioprotective effects in clinical practice. However, the rationale of the combined use remains unclear. The present study was designed to investigate the
We previously reported a novel danshensu derivative (R)-(3,5,6-Trimethylpyrazinyl) methyl-2-acetoxy-3-(3,4-diacetoxyphenyl) propanoate (ADTM) that exhibited promising cardiovascular protective activities, such as antioxidant and antiplatelet activities, as well as arterial relaxation. Particularly,
Danshensu, as the effective component of Salvia miltiorrhiza (Danshen), has been widely used in clinic for treatment of cardiovascular diseases in China. In the present study, we aimed to confirm the cardioprotective effect of Danshensu from myocardial ischemia/reperfusion (MI/R) injury in vivo, and
Danshen has been widely used in the treatment of cardiovascular diseases while Danshensu [3(3,4dihydroxyphenyl) 2 hydroxy propanoic acid, DSS], a major water-soluble component of Danshen has also been explored as an important compound in Danshen. In the present study, DSS was tested in isolated rat