14 nəticələr
OBJECTIVE
Long-term survival for children with diffuse intrinsic pontine glioma (DIPG) is less than 10%, and new therapeutic targets are urgently required. We evaluated a large cohort of DIPGs to identify recurrent genomic abnormalities and gene expression signatures underlying
Diffuse intrinsic pontine gliomas (DIPGs) have a dismal prognosis and are poorly understood brain cancers. Receptor tyrosine kinases stabilized by neuron-glial antigen 2 (NG2) protein are known to induce gliomagenesis. Here, we investigated NG2 expression in a cohort of DIPG specimens (n= 50). We
Diffuse intrinsic pontine glioma (DIPG) is an aggressive type of brainstem cancer occurring mainly in children, for which there currently is no effective therapy. Current efforts to develop novel therapeutics for this tumor make use of primary cultures of DIPG cells, maintained either as adherent
BACKGROUND
Platelet-derived growth factor receptor A is altered by amplification and/or mutation in diffuse intrinsic pontine glioma (DIPG). We explored in vitro on new DIPG models the efficacy of dasatinib, a multi-tyrosine kinase inhibitor targeting this receptor.
METHODS
Gene expression profiles
An impermeable blood-brain barrier and drug efflux via ATP-binding cassette (ABC) transporters such as p-glycoprotein may contribute to underwhelming efficacy of peripherally delivered agents to treat diffuse intrinsic pontine glioma (DIPG).To explore the Diffuse intrinsic pontine glioma (DIPG) is an untreatable, heterogeneous high-grade glioma (HGG) of the brainstem. This highly aggressive cancer affects mostly young children and is uniformly fatal. Genomic studies show that DIPG is driven by somatic mutations to histone H3, either H3.1 or H3.3
Diffuse intrinsic pontine gliomas (DIPG) are incurable brain tumors with an aggressive onset. Apart from irradiation, there are currently no effective therapies available for patients with DIPG, who have a median survival time of less than one year. Most DIPG cells harbor mutations in genes encoding
Diffuse intrinsic pontine glioma (DIPG) is a high-grade glioma that originates in the pons and is seen exclusively in children. Despite numerous efforts to improve treatment, DIPG remains incurable with 90% of children dying within 2 y of diagnosis, making it one of the leading causes of death in
On the basis of immunological results, it is not in doubt that the immune system is able to recognize and eliminate transformed cells. A plethora of studies have investigated the immune system of patients with cancer and how it is prone to immunosuppression, due in part to the decrease in lymphocyte
Pediatric high-grade glioma (HGG) is a devastating disease with a less than 20% survival rate 2 years after diagnosis. We analyzed 127 pediatric HGGs, including diffuse intrinsic pontine gliomas (DIPGs) and non-brainstem HGGs (NBS-HGGs), by whole-genome, whole-exome and/or transcriptome sequencing.
Diffuse intrinsic pontine glioma (DIPG) bears a dismal prognosis. A genetically engineered brainstem glioma model harboring the recurrent DIPG mutation, ACVR1-G328V (mACVR1), was developed for testing an immune-stimulatory gene therapy.We utilized the OBJECTIVE
To evaluate the growing skeleton for potential altered skeletalgenesis associated with antiangiogenesis therapy.
METHODS
Knee radiographs and magnetic resonance imaging (MRI) were prospectively obtained on patients enrolled on two consecutive clinical trials using vandetanib, a potent oral
Here, we review the recent literature on molecular discoveries in ependymomas and pediatric diffuse gliomas. Ependymomas can now be categorized into three location-related subgroups according to their biological profile: posterior fossa ependymomas, group A (PFA) and B (PFB), and supratentorial
Advances in understanding pediatric high-grade glioma (pHGG) genetics have revealed key differences between pHGG and adult HGG and have uncovered unique molecular drivers among subgroups within pHGG. The 3 core adult HGG pathways, the receptor tyrosine kinase-Ras-phosphatidylinositide 3-kinase, p53,