Səhifə 1 dan 22 nəticələr
Patients with triple negative breast cancer have a poor prognosis due in part to the lack of targeted therapies. In the search for novel drugs, our laboratory has developed a second-generation curcumin derivative, 3,5-bis(3,4,5-trimethoxybenzylidene)-1-methylpiperidine-4-one (RL71), that exhibits
The purpose of this study was to design a targeted anti-cancer drug delivery system for breast cancer. Therefore, doxorubicin (DOX) loaded poly(methyl vinyl ether maleic acid) nanoparticles (NPs) were prepared by ionic cross-linking method using Zn(2+) ions. To optimise the effect of DOX/polymer
Purpose Raloxifene (RA) receptors have over-expressed GPER-positive breast cancer tumors. The purpose of this work was to evaluate the antitumor activity and pharmacokinetic behavior of docetaxel (DTX), loaded in RA-targeted nanomicelles, which were designed to overcome a lack of specific
BACKGROUND
To reduce the nonspecifically distribution of chemotherapeutic agents throughout the whole body, which causes severe toxicity in normal tissues, targeting them towards a receptor overexpressed on tumor tissue, is a promising method for cancer therapy.
OBJECTIVE
The aim of the present
Due to low water solubility of docetaxel (DTX) it is formulated with ethanol and Tween 80 with lots of side effects. For this reason, special attention has been paid to formulate it in new drug nano-carriers.The goal of this study was to evaluate the We have previously shown that the curcumin derivative 3,5-bis(3,4,5-trimethoxybenzylidene)-1-methylpiperidine-4-one (RL71), when encapsulated in styrene maleic acid micelles (SMA-RL71), significantly suppressed the growth of MDA-MB-231 xenografts by 67%. Univariate statistical analysis showed that
BACKGROUND
Triple negative breast cancer (TNBC) is a subtype of breast cancer characterized by its poor outcome and a lack of targeted therapies. Recently, our laboratory has developed a second generation curcumin derivative, 3,5-bis(3,4,5-trimethoxybenzylidene)-1-methylpiperidine-4-one (RL71) that
Currently, developing a stable nanocarrier with high cellular internalization and low toxicity is a key bottleneck in nanomedicine. Here, we have developed a successful method to covalently conjugate poly(methyl vinyl ether-co-maleic acid) (PMVE-MA) copolymer on the surface of
The novel dual targeted nanoparticles loaded with doxorubicin (DOX) and magnetic nanoparticles (MNPs) were prepared for treatment of breast cancer. Nanoparticles were produced by a layer-by-layer technique and functionalized with a bioconjugate of chitosan-poly(methyl vinyl ether maleic
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer that differs in progression, recurrence, and prognosis from other forms of breast cancer. The heterogeneity of TNBC has remained a challenge as no targeted therapy is currently available. Previously, we and others have
Synthetic cannabinoid WIN55,212-2 (WIN) has shown a promise as an anticancer agent but causes psychoactive side-effects. In the present study, nano-micelles of styrene maleic acid (SMA)-conjugated WIN were synthesized to reduce side-effects and increase drug efficacy. SMA-WIN micelles were
Pirarubicin is a derivative of doxorubicin with improved intracellular uptake and reduced cardiotoxicity. We have prepared a micellar formulation of pirarubicin using styrene-maleic acid copolymer (SMA) of mean molecular weight of 1.2 kDa, which exhibits a mean diameter of 248 nm in solution. Being
The copolymer of styrene-maleic acid (SMA) was used to construct micelles containing pirarubicin (4'-O-tetrahydropyranyladriamycin, or THP) as a new anticancer drug formulation. The procedure for the preparation of the micelles was simple, the component consisting of only SMA and pirarubicin in a
Breast cancer is the most common cancer diagnosed among females worldwide. Although breast cancer survival has largely improved in the past 30 years, it remains highly heterogeneous in its response to treatment. Triple-negative breast cancer (TNBC) is a subtype of breast cancer that lacks the
Lipid emulsions are potential carriers for poorly water-soluble drugs. Previously, we revealed that lipid nanoparticles complexed with styrene maleic acid copolymer (SMA) disintegrate under acidic pH. In the present study, SMA-containing lipid emulsions (SMA emulsions) were prepared and their