Səhifə 1 dan 16 nəticələr
Schisandra chinensis is widely used and effective in protecting liver. There are many mechanisms of drug-induced hepatocyte injury, among which endoplasmic reticulum (ER) stress-induced cell injury plays an important role. However, little is known about whether schisandra chinensis can inhibit
Schizandrin B is extracted from Schisandra chinensis (Turcz.) Baill. This study evaluated the photoprotective effect of Schizandrin B on oxidative stress injury of the skin caused by UVB-irradiation and the molecular mechanism of the photoprotective effect of Schizandrin B, and we firstly found that
Renal proximal tubular epithelial cells are the main targets of toxic drugs such as cisplatin (CisPt), an alkylating agent indicated for the treatment of solid organ tumors. Current techniques aiming at reducing nephrotoxicity in patients receiving CisPt are still not satisfactory as they can only
Schizandrin B (Sch B) is the main component isolated from Schizandra fruit (Schisandra chinensis). While Sch B is established as having antioxidant, anti-proliferation and anti-inflammatory properties, but its activity in sepsis remains unclear. In the present study, we investigated the
Pulmonary fibrosis, a progressive and lethal lung disease, is a major therapeutic challenge for which new therapeutic strategies are warranted. Schisandrin B (Sch B) and Glycyrrhizic acid (GA) are the principal active ingredients of Schisandra chinensis and Glycyrrhiza glabra respectively, which
Angiotensin II (Ang II)-induced chronic inflammation and oxidative stress often leads to irreversible vascular injury, in which the endothelial to mesenchymal transition (EndMT) in the endothelial layers are involved. Schisandrin B (Sch B), a natural product isolated from traditional OBJECTIVE
To establish a fingerprint of seeds of Schisandra chinensis (SSC) and develop a method of quantitative analysis of multi-components by single marker (QAMS) for simultaneous determining six lignanoids in SSC.
METHODS
Eleven batches of SSC were determined by HPLC and a common mode of
Schisandra lignans, mainly including schizandrol A, schizandrol B, schisantherin A, schizandrin A, schizandrin B, etc., are the major active ingredients of Schisandra chinensis. In the present study, a robust liquid chromatography-tandem mass spectrometric (LC-MS/MS) method was developed for the
Lignans are imporant active ingredients of Schisandra sphenanthera. A micellar electrokinetic chromatography method was developed for the simultaneous determination of eight lignans--schizandrin, schisandrol B, schisantherin A, schisanhenol, anwulignan, deoxyschizandrin, schizandrin B and
Chemical investigation into the stems of the medicinal plant Schisandra sphaerandra led to the isolation and identification of a new dibenzocyclooctadiene lignan sphaerandrin A (1) and 11 known ones gomisin B (2), schirubrisin B (3), kadsuphilin B (4), schizandrin
Dibenzocyclooctadiene lignans, the major active components of fruit of Schisandra chinensis (Turcz.) Baill., have been found to have activities that could prevent prostate and thyroid cancer, hepatotoxicity, oxidative stress-induced cerebral injury, etc. This study was conducted to evaluate the
Ethnopharmacological relevance: In traditional Chinese medicine, the fruit of Schisandra chinensis (Turcz.) Baill (SC) is used to treat various nervous system diseases, such as dysphoria, anxiety, insomnia and many dreams. It is worthy to
Lung cancer is the leading cause of cancer death in the world. Schizandrin B (Sch B) is one of the main dibenzocyclooctadiene lignans present in the fruit of Schisandra chinensis (Schisandraceae). Sch B has multiple functions against cancer. The aim of this study was to determine the effect of Sch B
Gene expression profiling was performed on the human neuroglial cell line T98G after treatment with adaptogen ADAPT-232 and its constituents - extracts of Eleutherococcus senticosus root, Schisandra chinensis berry, and Rhodiola rosea root as well as several constituents individually, namely,
This study was performed to use UHPLC-QTOF/MSE technology to rapidly search and identify variations of chemical ingredients between Fructus Schisandrae Chinensis and its processed products. The present study provides a basis for the study of Chinese herbal medicine processing with a focus on the