Səhifə 1 dan 21 nəticələr
One in vitro and two in vivo experiments were conducted to determine appropriate methodology for and effects of detoxifying Darset, Redlan, and one commercial hybrid brown sorghum grain variety in threonine-deficient and nutritionally complete poultry rations. The detoxification procedure, which
Herbicide safeners protect cereal crops from herbicide injury by inducing genes and proteins involved in detoxification reactions, such as glutathione S-transferases (GSTs) and cytochrome P450s (P450s). Only a few studies have characterized gene or protein expression profiles for
In this study, the pervaporation membrane was used not only for the detoxification of sweet sorghum bagasse (SSB) hydrolysate, but also for butanol separation from its fermentation broth. As a result of detoxification, about 94.5% furfural was reduced by the pervaporation method, and 138.25 g/L
Sorghum is a C4 plant adapted to semi-arid environments, and characterized by high water-use efficiency. To better understand the molecular and physiological basis of drought response the sorghum genotype IS19453, selected as a drought tolerant line during field trials, was evaluated in a "dry-down"
The present work presents an alternative approach to ethanol production from sweet sorghum: without detoxification, acid-impregnated fresh sweet sorghum stem which contains soluble (glucose and sucrose) and insoluble carbohydrates (cellulose and hemicellulose) was steam pretreated under mild
Chilling temperatures (0 to 15°C) are a major constraint for temperate cultivation of tropical-origin crops, including the cereal crop sorghum ( [L.] Moench). Northern Chinese sorghums have adapted to early-season chilling, but molecular mechanisms of chilling tolerance are unknown. We used RNA
BACKGROUND
This study investigates the protective role of polyphenolic-rich extract from Sorghum bicolor against diethylnitrosamine (DEN)-induced redox imbalance in rat microsomes.
METHODS
Reactive oxygen species (ROS) scavenging potentials of the polyphenolic extract from S. bicolor (0.2-1.0 mg/mL)
The threshold of tolerance for nitrate of the parasitic weed Striga hermonthica (Del.) Benth and the host plant Sorghum bicolor L. was determined by estimating the impact of increasing nitrate loads on plant growth and various parameters of C and N assimilation. Nitrate supply improved chlorophyll
Certain chemicals referred to as herbicide antidotes protect sorghum from injury by chloroacetanilide herbicides such as metolachlor. The effect of herbicide antidotes on the glutathione S-transferase isozyme complement of etiolated sorghum (Sorghum bicolor [L.] Moench) shoots was examined. Elution
The physiological and biochemical responses of Sorghum bicolor (L.) Moench. to cadmium (Cd) (30 mg kg-1) and oil sludge (OS) (16 g kg-1) present in soil both separately and as a mixture were studied in pot experiments. The addition of oil sludge as a co-contaminant decreased Cd
Sweet sorghum was subjected to an impregnation step, which recovered most of the 1st generation sugars, prior to a steam-treatment extraction of the 2nd generation sugars, at three different severity factors (SF). A medium severity (3.56 SF) treatment proved to be an optimal compromise between the
Sorghum malt used during African beer processing contains a high level of cyanogenic glucoside (dhurrin), up to 1375 ppm. In traditional sorghum malting and mashing, dhurrin is not sufficiently hydrolyzed due to uncontrolled germination and a high gelatinization temperature. The cyanide content of
With growing demand for bio-based fuels and chemicals, there has been much attention given to the performance of different feedstocks. We have optimized the ammonia fiber expansion (AFEX) pretreatment and fermentation process to convert forage and sweet sorghum bagasse to ethanol. AFEX pretreatment
Glutathione S-transferases (GSTs) exist in various eukaryotes and function in detoxification of xenobiotics and in response to abiotic and biotic stresses. We have carried out a genome-wide survey of this gene family in 10 plant genomes. Our data show that tandem duplication has been regarded as the
A sorghum pathogen-inducible gene predicted to encode a simple extracellular leucine-rich repeat (LRR) protein SbLRR2 was previously isolated. LRR was the only domain identified in SbLRR2 and its homologous sequences. Phylogenetic analysis revealed that they are distinct from the simple