Səhifə 1 dan 28 nəticələr
Epidermal urocanic acid has been postulated to be the mediator of the specific state of immunosuppression induced by UV irradiation, by which UV-initiated tumour cells are able to evade normal recognition and can survive to grow progressively into malignant tumours. These experiments demonstrate
Multidrug resistance (MDR) is a major obstacle for the clinical therapy of malignant human cancers. The discovery of RNA interference provides efficient gene silencing within tumor cells for reversing MDR. In this study, a new "binary polymer" low-density lipoprotein-N-succinyl
The relationship of epidermal urocanic acid concentration and photoisomerization reactivity to human skin cancer was studied. Twelve cutaneous malignant melanoma patients, 10 basal cell carcinoma patients and 22 healthy matched controls were enrolled in the study. A solar simulating ultraviolet
Urocanic acid (UCA) is a major chromophore for ultraviolet (UV) radiation in the skin. On UV exposure, the naturally occurring trans-isomer converts to the cis-isomer in a dose-dependent manner. Accumulating evidence indicates that cis-UCA acts as an initiator of the UV-induced suppression of
Urocanic acid (UCA) is a metabolite of the amino acid histidine. It represents an important chromatophore in epidermis, which can absorb ultraviolet rays in UVB and UVA region and sequentially convert it from trans- to cis-isomer. Cis-isomer is not further degraded; it accumulates in the skin and is
OBJECTIVE
To present a novel treatment approach for urinary bladder cancer, protodynamic therapy, which comprises inhibition of cancer cell proliferation by intracellular acidification; cis-urocanic acid (cis-UCA) was investigated as a protodynamic drug in bladder cancer cell cultures and compared
OBJECTIVE
We determined the effect of protodynamic therapy against bladder cancer cells in vitro and in vivo. We investigated cis-urocanic acid in rat bladder cancer cell cultures and in an orthotopic rat urothelial carcinoma model to assess its safety and antiproliferative activity.
METHODS
The rat
The extracellular tumor microenvironment is acidified, whereas the intracellular pH of tumor and stromal cells is neutral. cis-Urocanic acid (cis-UCA), an endogenous compound of the skin, can acidify the cytosol by transporting protons into the cells. This phenomenon, termed the protodynamic
The low efficiency of conventional therapies in achieving long-term survival of patients with lung cancer calls for development of novel treatment options. Although several genes have been investigated for their antitumor activities through gene delivery, problems surrounding the methods used, such
The p53 tumor suppressor gene is the most frequently mutated gene identified in many tumors, including hepatocellular carcinoma (HCC). Gene therapy using the p53 gene has been proposed and performed with inactivation of p53 function. However, there have been few reports of nonviral vector-mediated
Our recent epidemiological study (Ahonen et al., Cancer Causes Control 11(2000) (847-852)) suggests that vitamin D deficiency may increase the risk of initiation and progression of prostate cancer. The nested case-control study was based on a 13-year follow-up of about 19000 middle-aged men free of
BACKGROUND
cis-urocanic acid (cis-UCA) is an endogenous amino acid metabolite capable of transporting protons from the mildly acidic extracellular medium into the cell cytosol. The resulting intracellular acidification suppresses many cellular activities. The current study was aimed at
In this article, a novel graft polymeric micelle with targeting function ground on aptamer AS1411 was synthesized. The micelle was based on chitosan-ss-polyethylenimine-urocanic acid (CPU) with dual pH/redox sensitivity and targeting effects. This micelle was produced for codelivering Toll-like
Several tumors exhibit pH gradient reversal, with acidification of extracellular pH (pHe) and alkalinization of intracellular pH (pHi). The pH gradient reversal is evident even during the preliminary stages of tumorigenesis and is crucial for survival and propagation of tumors, irrespective of their
Urocanic acid was conjugated to pullulan to synthesize O-urocanyl pullulan (URPA) with degree of substitution (DS) of 8.2%. URPA nanoparticles prepared by dialysis method had spherical shapes and a mean diameter of 156.8 ± 16.8 nm. Adriamycin (ADR) was successfully loaded into URPA nanoparticles and