5 вынікі
Interstitial fibrosis after acute myocardial infarction (MI) leads to cardiac structural remodeling and dysfunction. The peroxisome proliferator-activated receptor-gamma (PPAR-γ) agonist chrysin has been shown to protect injured myocardium through suppression of oxidative stress and inflammation.
Pharmacological strategies aimed at co-activating peroxisome proliferator-activated receptor-gamma (PPAR-γ)/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway have shown promising results in alleviating myocardial injury. The aim of the study was to evaluate the role of chrysin, a PPAR-γ
Inflammation and oxidative stress play an important part in the pathogenesis of focal cerebral ischemia/reperfusion (I/R) injury, resulting in neuronal death. The signaling pathways involved and the underlying mechanisms of these events are not fully understood. Chrysin, which is a naturally
A direct involvement of the antioxidant enzyme NAD(P)H:quinone oxidoreductase (NQO1) in neuroprotection has not yet been shown. The aim of this study was to examine changes, localization and role of NQO1 after different neuronal injury paradigms. In primary cultures of rat cortex the activity of
BACKGROUND
Bee propolis, a mixture of the secretion from bee tongue gland and wax gland, was collected from the tree bud and barked by bees. The components were rich in terpenes, phenolics, and flavonoids, and had anti-cancer, anti-bacterial, anti-inflammatory, hepatoprotective, and neuroprotection