6 вынікі
The A20/AN1 zinc-finger domain-containing proteins of the stress-associated proteins (SAPs) family are fast emerging as potential candidates for biotechnological approaches to improve abiotic stress tolerance in plants. We identified LmSAP, one of the SAPs genes in Lobularia maritima (L.) Desv., a
Agricultural soil pollution by heavy metals is a severe global ecological problem. We recently showed that overexpression of LmSAP, a member of the stress-associated protein (SAP) gene family isolated from Lobularia maritima, in transgenic tobacco led to enhanced tolerance to abiotic stress. In this
Stress-associated proteins (SAPs) are favorable targets to improve stress tolerance in plants, owing to their roles in developmental processes and stress responses. However, the role of SAPs and the molecular mechanisms by which they regulate plant stress responses remain poorly understood.
The relative amounts of the five nucleosides (deoxycytidine, 5-methyldeoxycytidine, deoxyadenosine, deoxyguanosine and thymidine) in the DNA of nine plant species, one plant satellite DNA, and one animal species were determined by high performance liquid chromatography. The method allows the clean
Halophyte Lobularia maritima LmSAP encodes an A20AN1 zinc-finger stress-associated protein which expression is up-regulated by abiotic stresses and heavy metals in transgenic tobacco. To deepen our understanding of LmSAP function, we isolated a 1,147 bp genomic fragment upstream of LmSAP coding
Stress-associated proteins (SAPs), such as A20/AN1 zinc-finger domain-containing proteins, have emerged as a novel class of proteins involved in abiotic stress signaling, and they are important candidates for preventing the loss of yield caused by exposure to environmental stresses. In a previous