Български
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Heart and Vessels 2002-Nov

Contribution of superoxide to reduced antioxidant activity of glycoxidative serum albumin.

Само регистрирани потребители могат да превеждат статии
Вход / Регистрация
Линкът е запазен в клипборда
Noriyuki Sakata
Akira Moh
Shigeo Takebayashi

Ключови думи

Резюме

Hyperglycemia increases oxidative stress in various tissues and leads to diabetic cardiovascular complication. Dyslipidemia, such as an increase in oxidized low-density lipoprotein (LDL), is well recognized in diabetic patients with hyperglycemia. However, the mechanism by which hyperglycemia causes the increased LDL oxidation remains unclear. Albumin is the most abundant protein in the circulation, and can function as an antioxidant. Therefore, we examined whether glycoxidative modification inhibits the antioxidant activity of albumin to LDL oxidation and clarified the mechanism by which this modification may suppress its antioxidant activity. Human serum albumin (HSA) was incubated in phosphate-buffered saline with and without glucose at 37 degrees C for up to 8 weeks under aerobic conditions (referred to as glycoxidation (goHSA) and oxidation (oHSA), respectively). Metal chelator-treated, nonoxidative HSA (chHSA) and freshly prepared HSA (fHSA) were used as controls. N(epsilon)-(carboxymethyl)lysine (CML), a glycoxidative product, was determined by enzyme-linked immunosorbent assay. Oxidation was estimated by measuring the thiols of the HSA molecule. Copper-mediated oxidation of LDL was conducted in the presence or absence of modified HSAs at 37 degrees C for 6 days. Malondialdehyde and negative charge of LDL were measured. To clarify the mechanism of reduced antioxidant activity of HSA, we examined firstly the binding activity of modified HSAs to copper, and secondly the effects of free radical scavengers on the formation of malondialdehyde. CML was formed in goHSA in a time- and concentration-dependent manner. Both goHSA and oHSA significantly decreased the contents of free thiol groups compared to ch- and fHSAs. The antioxidant activity of goHSA to LDL oxidation was the lowest among various modified HSAs. The oHSA showed a moderate decrease in antioxidant activity. The binding activity of go- and oHSAs to copper was lower than that of ch- and fHSAs. The formation of MDA from LDL oxidation in the presence of goHSA was completely inhibited by Tiron (1,2-dihydroxy-3,5-benzenedisulfonic acid) and superoxide dismutase. In contrast, catalase and mannitol had no effect. Our results indicate that in vitro glycoxidation of HSA induced a marked loss of antioxidant activity of this molecule to copper-mediated oxidation of LDL, which may be caused by the generation of superoxide.

Присъединете се към нашата
страница във facebook

Най-пълната база данни за лечебни билки, подкрепена от науката

  • Работи на 55 езика
  • Билкови лекове, подкрепени от науката
  • Разпознаване на билки по изображение
  • Интерактивна GPS карта - маркирайте билките на място (очаквайте скоро)
  • Прочетете научни публикации, свързани с вашето търсене
  • Търсете лечебни билки по техните ефекти
  • Организирайте вашите интереси и бъдете в крак с научните статии, клиничните изследвания и патентите

Въведете симптом или болест и прочетете за билките, които биха могли да помогнат, напишете билка и вижте болестите и симптомите, срещу които се използва.
* Цялата информация се базира на публикувани научни изследвания

Google Play badgeApp Store badge