Български
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Drug Targeting 2001-Jun

Liver organotropism and biotransformation of a novel platinum-ursodeoxycholate derivative, Bamet-UD2, with enhanced antitumour activity.

Само регистрирани потребители могат да превеждат статии
Вход / Регистрация
Линкът е запазен в клипборда
M G Larena
M C Martinez-Diez
M J Monte
M F Dominguez
M J Pascual
J J Marin

Ключови думи

Резюме

OBJECTIVE

Several members of a novel family of bile acid derivatives with cytostatic and virostatic activity have been synthesized and characterized. The aim of this work was to investigate the liver organotropism and biotransformation of two novel compounds with enhanced DNA-reactivity: Bamet-D3, in which a glycine-polyamine tandem was used as a spacer to separate the glycocholic acid moiety from the platinum(II) atom, and Bamet-UD2, in which cisplatin was directly bound to the carboxylate group of two ursodeoxycholic acid moieties.

METHODS

Drug uptake and "in vitro" toxicity were investigated using rat hepatocytes in primary culture. Following i.v. administration of 0.5 mumol cisplatin, Bamet-D3 or Bamet-UD2, bile output, urinary and fecal excretion, organ distribution and pharmacokinetic parameters were determined in short-term (3 h) and long-term (14 days) experiments carried out on anaesthetized and conscious rats, respectively. Liver biotransformation was investigated by HPLC analysis of bile samples. Total platinum was measured by flameless atomic absorption spectroscopy. Using Nude mice, antitumour activity was investigated in subcutaneously implanted Hepa 1-6 mouse hepatoma cells.

RESULTS

Uptake by rat hepatocytes was Bamet-UD2 (11.3 nmol/mg protein) > Bamet-D3 (5.6 nmol/mg protein) > cisplatin (2.1 pmol/mg protein). Bamet-UD2 induced "in vitro" cell toxicity, which was not observed for Bamet-D3 or cisplatin. On the contrary, no toxicity "in vivo" for Bamet-UD2 was found which was observed for cisplatin and Bamet-D3. This may be related with the fact that bile output of Bamet-UD2, which occurs with no major biotransformation, was > 10 fold higher than that of cisplatin and 3-fold higher than that of Bamet-D3, which was previously transformed into at least three different metabolites. Fecal excretion was Bamet-UD2 > Bamet-D3 > cisplatin, whereas urinary output was Bamet-D3 > cisplatin > Bamet-UD2. Accordingly, a marked liver- and a reduced kidney-vectoriality for Bamet-UD2, but not for Bamet-D3, was observed. Bamet-UD2 and cisplatin, but not Bamet-D3, were efficient in inhibiting tumour growth whereas, only Bamet-UD2 significantly prolonged survival time.

CONCLUSIONS

There results indicate that Bamet-UD2 is a cisplatin-ursodeoxycholate derivative with strong antitumour activity, marked hepatobiliary organotropism, and reduced toxic side-effects as compared to the parent drug cisplatin.

Присъединете се към нашата
страница във facebook

Най-пълната база данни за лечебни билки, подкрепена от науката

  • Работи на 55 езика
  • Билкови лекове, подкрепени от науката
  • Разпознаване на билки по изображение
  • Интерактивна GPS карта - маркирайте билките на място (очаквайте скоро)
  • Прочетете научни публикации, свързани с вашето търсене
  • Търсете лечебни билки по техните ефекти
  • Организирайте вашите интереси и бъдете в крак с научните статии, клиничните изследвания и патентите

Въведете симптом или болест и прочетете за билките, които биха могли да помогнат, напишете билка и вижте болестите и симптомите, срещу които се използва.
* Цялата информация се базира на публикувани научни изследвания

Google Play badgeApp Store badge