Glycoprotein production in moss bioreactors.
কীওয়ার্ডস
বিমূর্ত
Complex multimeric recombinant proteins such as therapeutic antibodies require a eukaryotic expression system. Transgenic plants may serve as promising alternatives to the currently favored mammalian cell lines or hybridomas. In contrast to prokaryotic systems, posttranslational modifications of plant and human proteins resemble each other largely, among those, protein N-glycosylation of the complex type. However, a few plant-specific sugar residues may cause immune reactions in humans, representing an obstacle for the broad use of plant-based systems as biopharmaceutical production hosts. The moss Physcomitrella patens represents a flexible tissue-culture system for the contained production and secretion of recombinant biopharmaceuticals in photobioreactors. The recent synthesis of therapeutic proteins as a scFv antibody fragment or the large and heavily modified complement regulator factor H demonstrate the versatility of this expression system. A uniquely efficient gene targeting mechanism can be employed to precisely engineer the glycosylation machinery for recombinant products. In this way, P. patens lines with non-immunogenic optimized glycan structures were created. Therapeutic antibodies produced in these strains exhibited antibody-dependent cellular cytotoxicity superior to the same molecules synthesized in mammalian cell lines.