Bengali
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
BMC Bioinformatics 2008-Jan

TOBFAC: the database of tobacco transcription factors.

কেবল নিবন্ধিত ব্যবহারকারীরা নিবন্ধগুলি অনুবাদ করতে পারবেন
প্রবেশ করুন - নিবন্ধন করুন
লিঙ্কটি ক্লিপবোর্ডে সংরক্ষিত হয়েছে
Paul J Rushton
Marta T Bokowiec
Thomas W Laudeman
Jennifer F Brannock
Xianfeng Chen
Michael P Timko

কীওয়ার্ডস

বিমূর্ত

BACKGROUND

Regulation of gene expression at the level of transcription is a major control point in many biological processes. Transcription factors (TFs) can activate and/or repress the transcriptional rate of target genes and vascular plant genomes devote approximately 7% of their coding capacity to TFs. Global analysis of TFs has only been performed for three complete higher plant genomes - Arabidopsis (Arabidopsis thaliana), poplar (Populus trichocarpa) and rice (Oryza sativa). Presently, no large-scale analysis of TFs has been made from a member of the Solanaceae, one of the most important families of vascular plants. To fill this void, we have analysed tobacco (Nicotiana tabacum) TFs using a dataset of 1,159,022 gene-space sequence reads (GSRs) obtained by methylation filtering of the tobacco genome. An analytical pipeline was developed to isolate TF sequences from the GSR data set. This involved multiple (typically 10-15) independent searches with different versions of the TF family-defining domain(s) (normally the DNA-binding domain) followed by assembly into contigs and verification. Our analysis revealed that tobacco contains a minimum of 2,513 TFs representing all of the 64 well-characterised plant TF families. The number of TFs in tobacco is higher than previously reported for Arabidopsis and rice.

RESULTS

TOBFAC: the database of tobacco transcription factors, is an integrative database that provides a portal to sequence and phylogeny data for the identified TFs, together with a large quantity of other data concerning TFs in tobacco. The database contains an individual page dedicated to each of the 64 TF families. These contain background information, domain architecture via Pfam links, a list of all sequences and an assessment of the minimum number of TFs in this family in tobacco. Downloadable phylogenetic trees of the major families are provided along with detailed information on the bioinformatic pipeline that was used to find all family members. TOBFAC also contains EST data, a list of published tobacco TFs and a list of papers concerning tobacco TFs. The sequences and annotation data are stored in relational tables using a PostgrelSQL relational database management system. The data processing and analysis pipelines used the Perl programming language. The web interface was implemented in JavaScript and Perl CGI running on an Apache web server. The computationally intensive data processing and analysis pipelines were run on an Apple XServe cluster with more than 20 nodes.

CONCLUSIONS

TOBFAC is an expandable knowledgebase of tobacco TFs with data currently available for over 2,513 TFs from 64 gene families. TOBFAC integrates available sequence information, phylogenetic analysis, and EST data with published reports on tobacco TF function. The database provides a major resource for the study of gene expression in tobacco and the Solanaceae and helps to fill a current gap in studies of TF families across the plant kingdom. TOBFAC is publicly accessible at http://compsysbio.achs.virginia.edu/tobfac/.

আমাদের ফেসবুক
পেজে যোগদান করুন

বিজ্ঞানের দ্বারা সমর্থিত সবচেয়ে সম্পূর্ণ completeষধি ভেষজ ডেটাবেস

  • 55 ভাষায় কাজ করে
  • বিজ্ঞানের সহায়তায় ভেষজ নিরাময়
  • ইমেজ দ্বারা ভেষজ স্বীকৃতি
  • ইন্টারেক্টিভ জিপিএস মানচিত্র - অবস্থানের উপর গুল্ম ট্যাগ করুন (শীঘ্রই আসছে)
  • আপনার অনুসন্ধান সম্পর্কিত বৈজ্ঞানিক প্রকাশনা পড়ুন
  • তাদের প্রভাব দ্বারা herষধি গুল্মগুলি অনুসন্ধান করুন Search
  • আপনার আগ্রহগুলি সংগঠিত করুন এবং নিউজ রিসার্চ, ক্লিনিকাল ট্রায়াল এবং পেটেন্টগুলির সাথে আপ ডেট থাকুন

একটি লক্ষণ বা একটি রোগ টাইপ করুন এবং এমন গুল্মগুলি সম্পর্কে পড়ুন যা সহায়তা করতে পারে, একটি bষধি টাইপ করতে পারে এবং এর বিরুদ্ধে ব্যবহৃত রোগ এবং লক্ষণগুলি দেখতে পারে।
* সমস্ত তথ্য প্রকাশিত বৈজ্ঞানিক গবেষণার উপর ভিত্তি করে

Google Play badgeApp Store badge