12 ফলাফল
Human pancreatic cancer is one of the leading causes of mortality and morbidity worldwide. Despite surgical resection remains the only curative therapeutic treatment for this disease, only the minority of patients can be resected due to late diagnosis. Recently, new chemotherapy schemes with the
A cancer-specific cell surface protein, tNOX, has been identified as a target for low-dose cell killing (apoptosis) of cancer cells by green tea catechins and Capsicum vanilloid combinations. This protein is uniquely associated with all forms of cancer and is absent from normal cells and tissues.
Because of the possible application of tea in the prevention of oral and esophageal cancers, the salivary levels of tea catechins were determined in six human volunteers after drinking tea. Saliva samples were collected after thoroughly rinsing the mouth with water. After drinking green tea
The effects of green tea polyphenols on cultured cancer cells have been well characterized, especially the effects of epigallocatechin-3-gallate (EGCg), since EGCg suppresses oncogenic signaling pathways and induces cell cycle arrest or apoptosis by regulating cell cycle-associated proteins. In the
Catechins are polyphenols with antioxidant activity. The fruit Cocos nucifera (Palmae) has a fi ber husk rich in catechins and the local population of northeast Brazil uses it as a medicine against various diseases. An anti-bacterial and anti-viral activity has been already observed using this
We validated the anticancer potential of a nanoformulation made by (+)-catechin, gelatin and carbon nanotubes in terms of inhibition of cancer cell proliferation, migration and associated neo-angiogenesis. Gelatin was selected to stabilize the catechin without compromising its anti-oxidant potential
Catechin components of green tea have been shown to possess anticarcinogenic properties possible related to their antioxidant activity. In the present study, a catechin containing green tea extract (GTE) was examined for its effect on three previously defined properties of liver tumor promoters,
(-)-Epigallocatechin gallate (EGCG), a catechin polyphenol component, is the main ingredient of green tea extract. Although the anti-carcinogenic and cancer inhibitory effects of EGCG have been widely reported, its genotoxicity is not clear and seldom reported. In this study, we examined the effects
OBJECTIVE
Epigallocatechin-3-gallate (EGCG), a catechin gallate ester, is the major component of green tea and has been demonstrated to inhibit tumor growth as well as inhibit smooth muscle cell migration. We evaluated the effect of the phytochemicals resveratrol, allicin, sulforaphane (SFN), and
(-)-Epigallocatechin gallate (EGCG), a catechin polyphenol compound, represents the main ingredient of green tea extract. Although EGCG has been shown to be growth inhibitory in a number of tumor cell lines, it is not clear whether the effect is cancer-specific. In this study we compared the effect
The hepatocyte growth factor (HGF) receptor, Met, is a strong prognostic indicator of breast cancer patient outcome and survival, suggesting that therapies targeting Met may have beneficial outcomes in the clinic. (-)-Epigallocatechin-3-gallate (EGCG), a catechin found in green tea, has been
Insulin resistance is a causative factor for type 2 diabetes, whereas the development of insulin resistance is closely related to chronic inflammation induced by factors such as tumor necrosis factor-α (TNF-α). Momordica charantia, also known as bitter melon, has been used as an herbal medicine and