পৃষ্ঠা 1 থেকে 17 ফলাফল
Colorectal cancer is a leading cause of cancer mortality with a complex carcinogenesis that includes reduced cellular senescence. Lamin proteins are decreased in senescing cells, and frequently decreased in malignancies. This study identified a new drug candidate for colorectal cancer that appears
Beta-asarone is one of the main bioactive constituents in traditional Chinese medicine Acorus calamu. Previous studies have shown that it has antifungal and anthelmintic activities. However, little is known about its anticancer effects. This study aimed to determine inhibitory effects on LoVo colon
Lung cancer is the leading cause of cancer death worldwide. Chemotherapy is one of the most effective strategies for lung cancer treatment. However, the side effects of chemotherapy limit the application of chemotherapeutic agents. The β-Asarone, a low-toxicity natural compound from a traditional
β-asarone is the main active ingredient of the Chinese herb Rhizoma Acori Tatarinowii, which exhibits a wide range of biological activities. It was confirmed to be an efficient cytotoxic agent against gastroenteric cancer cells. However, the exact mechanism of β-asarone in
Glioma is the most common primary brain tumor and has an undesirable prognosis due to the blood-brain barrier (BBB) and drug resistance. A thorough investigation of the changes in intracellular drug concentrations is important to observe therapeutic effects and cell resistance. P-glycoprotein (P-gp)
Cancer is one of the major non-communicable diseases posing substantial challenges in both developing and developed countries. The options available for treatment of different cancer are associated with various limitations, including severe toxicity, drug resistance, poor outcomes and a high risk of
OBJECTIVE
To observe the effects of beta-asarone on the morphology and cell viability in PC12 cells and cultured neonate rat cortical neurons.
METHODS
The cultured neonate rat cortical neurocytes were stained immunocytochemically with NSE, GFAP antibodies, respectively; Morphological changes were
β-asarone, the main component in the volatile oil of Acori tatarinowii Rhizoma, has been found to possess antitumor activity. However, its effect and mechanisms against tumor invasion and epithelial-mesenchymal transition (EMT) are still unclear. In this study, no or less cytotoxicity was caused by
Glioma is the most common primary brain tumor Despite the availability of adjuvant therapies, malignant glioma grows fast and metastasizes via cerebrospinal fluid after tumorectomy or cerebrospinal fluid shunt placement, and the prognosis for patients with glioma remains poor. Our previous study
β-Asarone (2, 4, 5-trimethoxy-(Z)-1-propenylbenzene) was obtained from Acorus calamus. Nitration of β-asarone with AgNO2/I2 in ether yielded 1-(2, 4, 5-trimethoxy phenyl)-2-nitropropene (1) but with NaNO2/I2 in ethylene glycol obtained 1-(2, 4, 5-trimethoxy phenyl)-1-nitropropene (2). Compound 2 was
Background
Lymphoma is one of the most common hematologic malignancy. Drug resistance is the main obstacle faced in lymphoma treatment.
Cancer stem cells are considered as the source of tumor recurrence, metastasis and drug resistance. The β-Asarone, a low-toxicity compound from
Though rhizoma acori graminei (RAG) is frequently prescribed in formulations for brain tumor in traditional Chinese medicine, the potential mechanisms are still unclear. The aim of this study is to determine the effect of β-asarone, a major component in the volatile oil of RAG, against brain tumor
Alzheimer's disease (AD) is a chronic progressive neurodegenerative disorder. Inflammatory responses and autophagy have been implicated in the amyloid-β (Aβ) aggregation in Alzheimer's disease. Although major evidence indicates that macro autophagy is involved in the pathogenesis of AD, its exact
BACKGROUND
Asarone is one of the most researched phytochemicals and is mainly present in the Acorus species and Guatteria gaumeri Greenman. In preclinical studies, both α- and β-asarone have been reported to have numerous pharmacological activities and at the same time, many studies have also
2,4,5-Trimethoxy chalcones and analogues were synthesized from asaronaldehyde derived from β-asarone. These novel compounds when tested against three human tumour cell lines (MCF-7, SW-982 and HeLa) using MTT assay, revealed that chalcones possessing electron donor groups in para position to