6 ফলাফল
EGb761, a standardized extract of Ginkgo biloba, has neuroprotective properties in animal models of ischemia, an activity that is partially attributed to its constituent, bilobalide. EGb761 has also been reported to inhibit edema formation induced by toxins such as triethyltin. The goal of this
Bilobalide, a constituent of Ginkgo biloba, has neuroprotective properties. Its mechanism of action is unknown but it was recently found to interact with neuronal transmission mediated by glutamate, gamma-aminobutyric acid (GABA) and glycine. The goal of this study was to test the interaction of
Bilobalide, a constituent of Ginkgo biloba, has neuroprotective properties. Its mechanism of action is unknown but it was recently found to block GABA(A) receptors. The goal of this study was to test the potential role of a GABAergic mechanism for the neuroprotective activity of bilobalide. In rat
The incidence and mortality of strokes have increased over the past three decades in China. Ischemic strokes can cause a sequence of detrimental events in patients, including increased permeability and dysfunction of the blood-brain barrier, brain edema, metabolic disturbance, endoplasmic reticulum
In vivo studies have indicated that systemically administered bilobalide, a sesquiterpene trilactone constituent of Ginkgo biloba leaf extracts, can reduce cerebral edema produced by triethyltin, decrease cortical infarct volume in certain stroke models, and reduce cerebral ischemia. In vitro and ex
BACKGROUND
Mitogen-activated protein kinase (MAPK) signaling pathways are implicated in inflammatory and apoptotic processes of cerebral ischemia and reperfusion (I/R) injury. Hence, MAPK pathways represent a promising therapeutic target. Exploring the full potential of inhibitors of MAPK pathways