5 ফলাফল
Developing cotyledons of safflower (Carthamus tinctorius L.) and sunflower (Helianthus annuus L.) readily utilised exogenously supplied (14)C-labelled fatty-acid substrates for the synthesis of triacylglycerols. The other major radioactive lipids were phosphatidylcholine and diacylglycerol. In
Microsomal preparations from the developing cotyledons of safflower (Carthamus tinctorius) catalyse the acylation of sn-glycerol 3-phosphate in the presence of acyl-CoA. Under these conditions the radioactive glycerol in sn-glycerol 3-phosphate accumulates in phosphatidic acid, phosphatidylcholine,
Microsomal preparations from the developing cotyledons of safflower (Carthamus tinctorius) catalysed the acylation of sn-glycerol 3-phosphate in the presence of acyl-CoA. The resulting phosphatidate was further utilized in the synthesis of diacyl- and tri-acylglycerol by the reactions of the
1. The average oil-body diameter in intact cells of developing linseed (Linum usitatissimum) and safflower (Carthamus tinctorius) cotyledons was similar (about 1.4 micrometer), and there was little change in size after oil bodies were isolated and repeatedly washed. 2. The glycerolipid composition
Carthamus tinctorius L., commonly known as safflower, is an important oilseed crop containing oil bodies. Oil bodies are intracellular organelles in plant cells for storing triacylglycerols (TAGs) and sterol esters. Oleosins are the most important surface proteins of the oil bodies. We predicted and