পৃষ্ঠা 1 থেকে 48 ফলাফল
The influence of reduced glycine decarboxylase complex (GDC) activity on leaf atmosphere CO2 and 13CO2 exchange was tested in transgenic Oryza sativa with the GDC H-subunit knocked down in leaf mesophyll cells. Leaf measurements on transgenic gdch knockdown and wild-type plants were carried out in
A highly oxidative stress-tolerant japonica rice line was isolated by T-DNA insertion mutation followed by screening in the presence of 50 mM H(2)O(2). The T-DNA insertion was mapped to locus Os09g0547500, the gene product of which was annotated as lysine decarboxylase-like protein (GenBank
The effect of salinity stress on the activity of arginine decarboxylase (ADC, EC 4.1.1.19), the first enzyme in biosynthesis of polyamines (PA) from arginine, as well as its transcript level has been compared in salt-sensitive (M-1-48) and salt-tolerant (Pokkali) rice cultivars. Treatment of 72 h
Pyruvate decarboxylase(PyrDC) was purified from rice bran to a specific activity of 1 mu kat/mg and partially characterized. The holoenzyme is a tetramer of two types of subunits with molecular masses 64 kDa and 62 kDa. Purified rice PyrDC exhibits positive cooperative kinetics with respect to
Oxalate decarboxylase (OxDC), catalyzing the degradation of oxalic acid, is widely distributed in varieties of organisms. In this study, an oxalate decarboxylase gene from Bacillus subtilis strain BS-916, Bacisubin, was transformed into rice variety Nipponbare to generate transgenic rice with
We have isolated full-length cDNAs for two distinct isoforms of glutamate decarboxylase (GAD), designated OsGAD1 and OsGAD2 from a rice shoot cDNA library. Open reading frames found in OsGAD1 and OsGAD2 cDNAs encode putative proteins of 501 (56.7 kDa) and 500 amino acids (55.6 kDa), respectively.
In this study, we have isolated a rice (Oryza sativa L.) glutamate decarboxylase (RicGAD) clone from a root cDNA library, using a partial Arabidopsis thaliana GAD gene as a probe. The rice root cDNA library was constructed with mRNA, which had been derived from the roots of rice seedlings subjected
Glutamate decarboxylase (GAD) converts L-glutamate to g-aminobutyric acid (GABA), which is a non-protein amino acid present in all organisms with some activities including improvement of neurve and cytoskeltal functions. Therefore, GAD is considered as a key molecule to use in molecular therapy of
We have investigated the regulation of the rice (Oryza sativa) gene OsSAMDC, which encodes an S-adenosyl-L-methionine decarboxylase (SAMDC) involved in polyamine biosynthesis. Clones representing genes differentially expressed at 5 degrees C and 20 degrees C were isolated from a cDNA library
We posed the question of whether steady-state levels of the higher polyamines spermidine and spermine in plants can be influenced by overexpression of a heterologous cDNA involved in the later steps of the pathway, in the absence of any further manipulation of the two synthases that are also
Effects of ethylene on free polyamine biosynthesis in rice (Oryza sativa L. cv Taichung Native 1) coleoptiles were investigated in sealed and aerobic conditions. In sealed conditions, putrescine increased significantly and coincided with ethylene accumulation. Application of ethylene in sealed
Lipoic acid is an essential disulfide cofactor required for the lipoate-dependent enzymes including pyruvate dehydrogenase (PDH), alpha-ketoglutarate dehydrogenase (KGDH), and glycine cleavage enzymes that function in key metabolic pathways in most prokaryotes and eukaryotes. Lipoic acid is
We investigated whether down-regulation of arginine decarboxylase (ADC) activity and concomitant changes in polyamine levels result in changes in the expression of downstream genes in the polyamine pathway. We generated transgenic rice (Oryza sativa L.) plants in which the rice adc gene was
Arginine decarboxylase (ADC) cDNA from oat (Avena sativa L.) was introduced into rice (Oryza sativa L.) genome by an Agrobacterium-mediated transformation method. Expression of the ADC transgene under the control of an ABA-inducible promoter led to stress-induced upregulation of ADC activity and