পৃষ্ঠা 1 থেকে 35 ফলাফল
The ispC gene of Arabidopsis thaliana was expressed in pseudomature form without the putative plastid-targeting sequence in a recombinant Escherichia coli strain. The recombinant protein was purified by affinity chromatography and was shown to catalyze the formation of 2C-methyl-D-erythritol
A hypothetical gene with similarity to the ispD gene of Escherichia coli was cloned from Arabidopsis thaliana cDNA. The ORF of 909 bp specifies a protein of 302 amino acid residues. The cognate chromosomal gene consists of 2,071 bp and comprises 11 introns with a size range of 78-202 bp. A fragment
2-C-Methyl-D-erythritol-2,4-cyclodiphosphate (MEcDP) is an intermediate of the plastid-localized 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway which supplies isoprenoid precursors for photosynthetic pigments, redox co-factor side chains, plant volatiles, and phytohormones. The Arabidopsis hds-3
The synthesis of 1-deoxy-D-xylulose 5-phosphate (DXP), catalyzed by the enzyme DXP synthase (DXS), represents a key regulatory step of the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway for isoprenoid biosynthesis. In plants DXS is encoded by small multigene families that can be classified into,
Isoprenoids, also known as terpenoids, are biosynthesized by the condensation of the two C5 unit isopentenyl diphosphate (IPP) and isomer dimethylallyl diphosphate (DMAPP). Generally, plants use two separate pathways plastidial Methyl-erythritol-4-phosphate (MEP) and cytosolic acetate-mevalonate
The plastidial methylerythritol phosphate(MEP) pathway provides 5-carbon precursors to the biosynthesis of isoprenoid (including artemisinin). 2-C-Methyl-D-erythritol-4-phosphate cytidylyltransferase (MCT) is the third enzyme of the MEP pathway, which catalyzes 2-C-methyl-D-erythritol-4-phosphate to
2-C-methyl-D-erythritol 4-phosphate cytidyltransferase (MECT), the third enzyme of the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway, catalyzes formation of 4-(cytidine 5'-diphospho)-2-C-methyl-D-erythritol from MEP. GbMECT, presumably involved in ginkgolide biosynthesis, was cloned and
The homodimeric 2C-methyl-D-erythritol 4-phosphate cytidylyltransferase contributes to the nonmevalonate pathway of isoprenoid biosynthesis. The crystal structure of the catalytic domain of the recombinant enzyme derived from the plant Arabidopsis thaliana has been solved by molecular replacement
Plastid isoprenoids are synthesized via the 2-C-methyl-D-erythritol 4-phosphate pathway. A few years after its discovery, most of the Escherichia coli genes involved in the pathway have been identified, including gcpE. In this work, we have identified an Arabidopsis thaliana protein with homology to
Various plant isoprenoids are synthesized via the non-mevalonate pathway of isopentenyl diphosphate formation. In this pathway, 1-deoxy-D-xylulose 5-phosphate (DOXP), the first intermediate, is transformed to 2-C-methyl-D-erythritol 4-phosphate (MEP) by an enzyme which was recently cloned from
The mevalonate-independent methylerythritol phosphate pathway is widespread in bacteria. It is also present in the chloroplasts of all phototrophic organisms. Whereas the first steps, are rather well known, GcpE and LytB, the enzymes catalyzing the last two steps have been much less investigated.
2C-Methyl-D-erythritol-4-phosphate synthase, encoded by the ispC gene (also designated dxr), catalyzes the first committed step in the nonmevalonate isoprenoid biosynthetic pathway. The reaction involves the isomerization of 1-deoxy-D-xylulose 5-phosphate, giving a branched-chain aldose derivative
3-Hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR) is the first rate-limiting enzyme regulating the synthesis of terpenoids upstream of the mevalonate (MVA) pathway. In higher plants, members of the HMGR genes families play an important role in plant growth and development and in response to
The X-ray crystal structure of the 2C-methyl-D-erythritol 2,4-cyclodiphosphate synthase (MCS) from Arabidopsis thaliana has been solved at 2.3 A resolution in complex with a cytidine-5-monophosphate (CMP) molecule. This is the first structure determined of an MCS enzyme from a plant. Major
Natural rubber is synthesized as rubber particles in the latex, the fluid cytoplasm of laticifers, of Hevea brasiliensis. Although it has been found that natural rubber is biosynthesized through the mevalonate pathway, the involvement of an alternative 2-C-methyl-D-erythritol 4-phosphate (MEP)