পৃষ্ঠা 1 থেকে 185 ফলাফল
We have previously shown that circulating progenitor cells in patients with polycythemia vera (PV) are hypersensitive to insulin-like growth factor I (IGF-I) with respect to erythroid burst formation in serum-free medium, and that this effect occurs through the IGF-I receptor. To investigate the
Polycythemia vera (PV) and essential thrombocythemia (ET) are chronic myeloproliferative disorders characterized by an increased incidence of thrombo-hemorrhagic complications. The acquired somatic Janus kinase 2 (JAK2) V617F mutation is present in the majority of PV and ET patients. Because
Polycythemia vera (PV) is a clonal hematologic disease characterized by hyperplasia of the three major bone marrow lineages. PV erythroid progenitor cells display hypersensitivity to several growth factors, which might be caused by an abnormality of tyrosine phosphorylation. In the present study, we
Protein tyrosine kinases (PTKs) and phosphatases (PTPs) play a crucial role in normal cell development, and dysfunction of these enzymes has been implicated in human cancers. Polycythemia vera (PV) is a clonal hematologic disease characterized by hypersensitivity of hematopoietic progenitor cells to
OBJECTIVE
An activating somatic mutation of Janus kinase 2 V617F (JAK2V617F) is present in most polycythemia vera (PV) patients. We studied efficacy of two potent tyrosine kinase inhibitors (TKI), AEE788 and AMN107, in vitro on cells bearing this mutation.
METHODS
We employed reporter cells
Polycythemia vera (PV), essential thrombocythemia (ET), and myeloid metaplasia with myelofibrosis (MMM) are clonal disorders arising from hematopoietic progenitors. An internet-based protocol was used to collect clinical information and biological specimens from patients with these diseases.
Recent studies have shown that Janus tyrosine kinase 2 (JAK2) V617F mutation is found in nearly all patients with polycythemia vera (PV) and underlie the basis of PV molecular pathogenesis. Moreover, JAK2 V617F patients with essential thrombocythemia (ET) have been found to have some clinical
OBJECTIVE
An activating mutation of Janus kinase 2 (JAK2) in majority of polycythemia vera (PV) and other myeloproliferative disorders was reported. As imatinib inhibits several tyrosine kinases, we studied its effect in PV.
METHODS
We employed FDCP reporter cells expressing wild-type JAK2 and
Janus kinase 2 (JAK2) plays a crucial role in the pathomechanism of myeloproliferative disorders and hematologic malignancies. A somatic mutation of JAK2 (Val617Phe) was previously shown to occur in 98% of patients with polycythemia vera and 50% of patients with essential thrombocythemia and primary
Therapeutic drug monitoring (TDM) help to improve treatment efficacy and safety. Therefore, a simple and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for the simultaneous monitoring of 11 tyrosine kinase inhibitors (TKIs) in human plasma.
Polycythemia vera (PV) is a myeloproliferative neoplasm (MPN) characterised by the V617F activating mutation in the tyrosine kinase JAK2. PV patients exhibit increased haemoglobin levels and red cell mass because of uncontrolled proliferation of the erythroid lineage. Thrombosis and transformation
Polycythemia vera (PV) is a chronic myeloproliferative neoplasm (MPN) characterized by excessive production of red blood cells. Patients with PV are at a risk of thrombosis, bleeding, and transformation to myelofibrosis or acute myeloid leukemia. Therapy for PV is based on the use of phlebotomy,
Protein tyrosine kinases are key participants in signal transduction pathways that regulate cellular growth, activation and differentiation. Aberrant PTK activity resulting from gene mutation (often accompanying chromosome translocation) or overexpression of these enzymes plays an etiologic role in
As well as playing vital roles in main cellular processes, such as abnormal proliferation, differentiation, survival, apoptosis, and a lot of tyrosine kinases (TK) are involved in oncogenesis. TK or components of their signal pathways have been found abnormal in many hematological malignancies.