Bosnian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Theriogenology 2019-Nov

A new paradigm regarding testicular thermoregulation in ruminants?

Samo registrirani korisnici mogu prevoditi članke
Prijavite se / prijavite se
Veza se sprema u međuspremnik
G Rizzoto
J Kastelic

Ključne riječi

Sažetak

Increased testicular temperature reduces percentages of morphologically normal and motile sperm and fertility. Specific sperm defects appear at consistent intervals after testicular hyperthermia, with degree and duration of changes related to intensity and duration of the thermal insult. Regarding pathogenesis of testicular hyperthermia on sperm quality and fertility, there is a long-standing paradigm that: 1) testes operate near hypoxia; 2) blood flow to the testes does not increase in response to increased testicular temperature; and 3) an ensuing hypoxia is the underlying cause of heat-induced changes in sperm morphology and function. There are very limited experimental data to support this paradigm, but we have data that refute it. In 2 × 3 factorial studies, mice and rams were exposed to two testicular temperatures (normal and increased) and three concentrations of O2 in inspired air (hyperoxia, normoxia and hypoxia). As expected, increased testicular temperature had deleterious effects on sperm motility and morphology; however, hyperoxia did not prevent these changes nor did hypoxia replicate them. In two follow-up experiments, anesthetized rams were sequentially exposed to: 1) three O2 concentrations (100, 21 and 13% O2); or 2) three testicular temperatures (33, 37 and 40 °C). As O2, decreased, testis maintained O2 delivery and uptake by increasing testicular blood flow and O2 extraction, with no indication of anaerobic metabolism. Furthermore, as testicular temperature increased, testicular metabolic rate nearly doubled, but increased blood flow and O2 extraction prevented testicular hypoxia and anaerobic metabolism. In conclusion, our data, in combination with other reports, challenged the paradigm that testicular hyperthermia fails to increase testicular blood flow and the ensuing hypoxia disrupts spermatogenesis.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta naukom

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti naukom
  • Prepoznavanje biljaka po slici
  • Interaktivna GPS karta - označite bilje na lokaciji (uskoro)
  • Pročitajte naučne publikacije povezane sa vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoja interesovanja i budite u toku sa istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Sve informacije temelje se na objavljenim naučnim istraživanjima

Google Play badgeApp Store badge