Bosnian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Free Radical Biology and Medicine 1996

Antioxidants in peripheral nerve.

Samo registrirani korisnici mogu prevoditi članke
Prijavite se / prijavite se
Veza se sprema u međuspremnik
F J Romero

Ključne riječi

Sažetak

Oxidative stress and antioxidants have been related in a wide variety of ways with nervous tissue. This review attempts to gather the most relevant information related to a) the antioxidant status in non pathologic nervous tissue; b) the hypothesis and evidence for oxidative stress (considered as the disequilibrium between prooxidants and antioxidants in the cell) as the responsible mechanism of diverse neurological diseases; and c) the correlation between antioxidant alterations and neural function, in different experimental neuropathies. Decreased antioxidant availability has been observed in different neurological disorders in the central nervous system, for example, Parkinson's disease, Alzheimer's disease, epilepsy, amyotrophic lateral sclerosis, cerebral ischaemia, etc. Moreover, the experimental manipulation of the antioxidant defense has led in some cases to interesting experimental models in which electrophysiological alterations are associated with the metabolic modifications induced. In view of the electrophysiological and biochemical effects of some protein kinase C inhibitors on different neural experimental models, special attention is dedicated to the role of this kinase in peripheral nervous tissue. The nervous tissue, central as well as peripheral, has two main special features that are certainly related to its antioxidant metabolism: the lipid-enriched membrane and myelin sheaths, and cellular excitability. The former explains the importance of the glutathione (GSH)-conjugating activity towards 4-hydroxy-nonenal, a biologically active product of lipid peroxidation, present in nervous tissue and in charge of its inactivation. The impairment of the latter by oxidative damage or experimental manipulation of antioxidant metabolism is discussed. Work on different experimental neuropathies from author's laboratory has been primarily used to provide information about the involvement of free radical damage and antioxidants in peripheral nerve metabolic and functional impairment.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta naukom

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti naukom
  • Prepoznavanje biljaka po slici
  • Interaktivna GPS karta - označite bilje na lokaciji (uskoro)
  • Pročitajte naučne publikacije povezane sa vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoja interesovanja i budite u toku sa istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Sve informacije temelje se na objavljenim naučnim istraživanjima

Google Play badgeApp Store badge