Bosnian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Environmental Science and Pollution Research 2011-Jul

Enzymatic basis for fungicide removal by Elodea canadensis.

Samo registrirani korisnici mogu prevoditi članke
Prijavite se / prijavite se
Veza se sprema u međuspremnik
Rachel Dosnon-Olette
Peter Schröder
Bernadett Bartha
Aziz Aziz
Michel Couderchet
Philippe Eullaffroy

Ključne riječi

Sažetak

OBJECTIVE

Plants can absorb a diversity of natural and man-made toxic compounds for which they have developed diverse detoxification mechanisms. Plants are able to metabolize and detoxify a wide array of xenobiotics by oxidation, sugar conjugation, glutathione conjugation, and more complex reactions. In this study, detoxification mechanisms of dimethomorph, a fungicide currently found in aquatic media were investigated in Elodea canadensis.

METHODS

Cytochrome P450 (P450) activity was measured by an oxygen biosensor system, glucosyltransferases (GTs) by HPLC, glutathione S-transferases (GSTs), and ascorbate peroxidase (APOX) were assayed spectrophotometrically.

RESULTS

Incubation of Elodea with dimethomorph induced an increase of the P450 activity. GST activity was not stimulated by dimethomorph suggesting that GST does not participate in dimethomorph detoxification. In plants exposed to dimethomorph, comparable responses were observed for GST and APOX activities showing that the GST was more likely to play a role in response to oxidative stress. Preincubation with dimethomorph induced a high activity of O- and N-GT, it is therefore likely that both enzymes participate in the phase II (conjugation) of dimethomorph detoxification process.

CONCLUSIONS

For the first time in aquatic plants, P450 activity was shown to be induced by a fungicide suggesting a role in the metabolization of dimethomorph. Moreover, our finding is the first evidence of dimethomorph and isoproturon activation of cytochrome P450 multienzyme family in an aquatic plant, i.e., Elodea (isoproturon was taken here as a reference molecule). The detoxification of dimetomorph seems to proceed via hydroxylation, and subsequent glucosylation, and might yield soluble as well as cell wall bound residues.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta naukom

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti naukom
  • Prepoznavanje biljaka po slici
  • Interaktivna GPS karta - označite bilje na lokaciji (uskoro)
  • Pročitajte naučne publikacije povezane sa vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoja interesovanja i budite u toku sa istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Sve informacije temelje se na objavljenim naučnim istraživanjima

Google Play badgeApp Store badge