Bosnian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Shock 1999-Jul

Glycine improves survival after hemorrhagic shock in the rat.

Samo registrirani korisnici mogu prevoditi članke
Prijavite se / prijavite se
Veza se sprema u međuspremnik
Z Zhong
N Enomoto
H D Connor
N Moss
R P Mason
R G Thurman

Ključne riječi

Sažetak

This study investigated the effect of glycine on hemorrhagic shock in the rat. Rats were bled to maintain mean arterial pressure at 30-35 mm Hg for 1 h and subsequently resuscitated with 60% shed blood and lactated Ringer's solution. Only 20% of rats receiving saline just prior to resuscitation survived 72 h after shock. Survival was increased by glycine (11.2-90.0 mg/kg, i.v.) in a dose-dependent manner (half-maximal effect = 25 mg/kg) and reached maximal values of 78% at 45 mg/kg. Eighteen hours after resuscitation, creatinine phosphokinase increased 23-fold, transaminases increased 33-fold, and creatinine was elevated 2.4-fold, indicating injury to the heart, liver, and kidney, respectively. Pulmonary edema, leukocyte infiltration, and hemorrhage were also observed. In the kidney, proximal tubular necrosis, leukocyte infiltration, and severe hemorrhage in the outer medullary area occurred in rats receiving saline. Glycine reduced these pathological alterations significantly. It has been reported that oxidative stress and tumor necrosis factor(TNF)-alpha-production are involved in the pathophysiology of multiple-organ injury after shock. In this study, free radical production was increased 4-fold during shock, an effect blocked largely by glycine. Increases in intracellular calcium and production of TNF-alpha by isolated Kupffer cells stimulated by endotoxin were elevated significantly by hemorrhagic shock, alterations which were totally prevented by glycine. Taken together, it is concluded that glycine reduces organ injury and mortality caused by hemorrhagic shock by preventing free radical production and TNF-alpha formation.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta naukom

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti naukom
  • Prepoznavanje biljaka po slici
  • Interaktivna GPS karta - označite bilje na lokaciji (uskoro)
  • Pročitajte naučne publikacije povezane sa vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoja interesovanja i budite u toku sa istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Sve informacije temelje se na objavljenim naučnim istraživanjima

Google Play badgeApp Store badge