Bosnian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
American Journal of Pathology 2002-Jul

Reactive nitrogen intermediates in giant cell arteritis: selective nitration of neocapillaries.

Samo registrirani korisnici mogu prevoditi članke
Prijavite se / prijavite se
Veza se sprema u međuspremnik
Astrid Borkowski
Brian R Younge
Luke Szweda
Bettina Mock
Johannes Björnsson
Kerstin Moeller
Jörg J Goronzy
Cornelia M Weyand

Ključne riječi

Sažetak

Arterial wall damage in giant cell arteritis (GCA) is mediated by several different macrophage effector functions, including the production of metalloproteinases and lipid peroxidation. Tissue-invading macrophages also express nitric oxide synthase (NOS)-2, but it is not known whether nitric oxide-related mechanisms contribute to the disease process. Nitric oxide can form nitrating agents, including peroxynitrite, a nitric oxide congener formed in the presence of reactive oxygen intermediates. Protein nitration selectively targets tyrosine residues and can result in a gain, as well as a loss, of protein function. Nitrated tyrosine residues in GCA arteries were detected almost exclusively on endothelial cells of newly formed microcapillaries in the media, whereas microvessels in the adventitia and the intima were spared. Nitration correlated with endothelial NOS-3 expression and not with NOS-2-producing macrophages, which preferentially homed to the hyperplastic intima. The restriction of nitration to the media coincided with the production of reactive oxygen intermediates as demonstrated by the presence of the toxic aldehyde, 4-hydroxynonenal. Depletion of tissue-infiltrating macrophages in human temporal artery-SCID mouse chimeras disrupted nitrotyrosine generation, demonstrating a critical role of macrophages in the nitration process that targeted medial microvessels. Thus, protein nitration in GCA is highly compartmentalized, reflecting the production of reactive oxygen and reactive nitrogen intermediates in the inflamed arterial wall. Heterogeneity of microvessels in NOS-3 regulation may be an additional determinant contributing to this compartmentalization and could explain the preferential targeting of newly generated capillary beds.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta naukom

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti naukom
  • Prepoznavanje biljaka po slici
  • Interaktivna GPS karta - označite bilje na lokaciji (uskoro)
  • Pročitajte naučne publikacije povezane sa vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoja interesovanja i budite u toku sa istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Sve informacije temelje se na objavljenim naučnim istraživanjima

Google Play badgeApp Store badge