Bosnian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Medical and Biological Engineering and Computing 2012-Mar

Robust extraction of P300 using constrained ICA for BCI applications.

Samo registrirani korisnici mogu prevoditi članke
Prijavite se / prijavite se
Veza se sprema u međuspremnik
Ozair Idris Khan
Faisal Farooq
Faraz Akram
Mun-Taek Choi
Seung Moo Han
Tae-Seong Kim

Ključne riječi

Sažetak

P300 is a positive event-related potential used by P300-brain computer interfaces (BCIs) as a means of communication with external devices. One of the main requirements of any P300-based BCI is accuracy and time efficiency for P300 extraction and detection. Among many attempted techniques, independent component analysis (ICA) is currently the most popular P300 extraction technique. However, since ICA extracts multiple independent components (ICs), its use requires careful selection of ICs containing P300 responses, which limits the number of channels available for computational efficiency. Here, we propose a novel procedure for P300 extraction and detection using constrained independent component analysis (cICA) through which we can directly extract only P300-relevant ICs. We tested our procedure on two standard datasets collected from healthy and disabled subjects. We tested our procedure on these datasets and compared their respective performances with a conventional ICA-based procedure. Our results demonstrate that the cICA-based method was more reliable and less computationally expensive, and was able to achieve 97 and 91.6% accuracy in P300 detection from healthy and disabled subjects, respectively. In recognizing target characters and images, our approach achieved 95 and 90.25% success in healthy and disabled individuals, whereas use of ICA only achieved 83 and 72.25%, respectively. In terms of information transfer rate, our results indicate that the ICA-based procedure optimally performs with a limited number of channels (typically three), but with a higher number of available channels (>3), its performance deteriorates and the cICA-based one performs better.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta naukom

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti naukom
  • Prepoznavanje biljaka po slici
  • Interaktivna GPS karta - označite bilje na lokaciji (uskoro)
  • Pročitajte naučne publikacije povezane sa vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoja interesovanja i budite u toku sa istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Sve informacije temelje se na objavljenim naučnim istraživanjima

Google Play badgeApp Store badge