The presence of gamma' chain impairs fibrin polymerization.
Ključne riječi
Sažetak
BACKGROUND
A fraction of fibrinogen molecules contain an alternatively spliced variant chain called gamma'. Plasma levels of this variant have been associated with both myocardial infarction and venous thrombosis. Because clot structure has been associated with cardiovascular risk, we examined the effect of gamma' chain on clot structure.
METHODS
We expressed three fibrinogen variants in Chinese hamster ovary (CHO) cells: gamma/gamma homodimer, gamma/gamma' heterodimer, and gamma'/gamma' homodimer. We observed thrombin-catalyzed fibrinopeptide release by HPLC, fibrin polymerization by turbidity, and clot structure by scanning electron microscopy. We characterized post-translational modifications by mass spectrometry.
RESULTS
Fibrinopeptide A was released at the same rate for all three fibrinogens, while fibrinopeptide B was released faster from the gamma'/gamma' homodimer. The rise in turbidity was slower and final absorbance was lower during polymerization of gamma'-containing fibrinogens than for gamma/gamma fibrinogen. Micrographs showed that gamma'/gamma' fibrin clots are composed of very thin fibers, while the diameter of gamma/gamma' fibers is similar to gamma/gamma fibers. Further, the fiber networks formed from gamma'-containing samples were non-uniform. Mass spectrometry showed heterogeneous addition of N-glycans and tyrosine sulfation in the gamma' chain.
CONCLUSIONS
The presence of gamma' chains slows lateral aggregation and alters fibrin structure. We suggest these changes are likely due to charge-charge repulsion, such that polymerization of the gamma'/gamma' homodimer is more impaired than the heterodimer since these repulsions are partially offset by incorporation of gamma chains in the gamma/gamma' heterodimer.