Page 1 od 37 rezultati
The effects of caffeic acid phenethyl ester (CAPE), an antioxidant derived from propolis, on the infarct volume elicited by focal cerebral ischemia were studied on Long-Evans rats. Cerebral infarction was induced by microsurgical procedures with ligation of the right middle cerebral artery (MCA) and
OBJECTIVE
Caffeic acid phenethyl ester (CAPE) is a natural product with potent anti-inflammatory, antitumor and antioxidant activities and attenuates inflammation and lipid peroxidation induced by ischemia-reperfusion injury. The purpose of the present study was to investigate the effects of CAPE on
Myocardial ischemia--reperfusion (MI/R) represents a clinically relevant problem associated with thrombolysis, angioplasty, and coronary bypass surgery. MI/R injury is known to occur on restoration of coronary flow after a period of myocardial ischemia. Injury of myocardium caused by I/R includes
In this study, we aimed to investigate the neuroprotective effects of caffeic acid phenethyl ester (CAPE), an active component of propolis purified from honeybee hives, on photothrombotic cortical ischemic injury in mice. Permanent focal ischemia was achieved in the medial frontal and somatosensory
Brain ischemia pathophysiology involves a complex cascade of events such as inflammation and oxidative stress that lead to neuronal loss and cognitive deficits. Caffeic acid (CA) is a natural phenolic compound with antioxidant and anti-inflammatory properties. To evaluate the neuroprotective
We evaluated the preventive effect of caffeic acid (CA) on lysosomal enzymes in isoproterenol (ISO)-treated myocardial infarcted rats. Male albino Wistar rats were pretreated with CA (15 mg/kg) daily for a period of 10 days. After the pretreatment period, ISO (100 mg/kg) was subcutaneously injected
The present study was conducted to investigate whether caffeic acid phenethyl ester (CAPE), an active component of propolis extract, has a protective effect on brain injury after focal permanent cerebral ischemia, and to determine the possible antioxidant mechanisms. Cerebral infarction in adult
Caffeic acid phenyl ester is distributed wildly in nature and has antidiabetic and cardiovascular protective effects. However, rapid decomposition by esterase leads to its low bioavailability in vivo. In this study, chronic metabolic and cardiovascular effects of oral caffeic acid phenylethyl amide,
The present study aims to evaluate the protective effects of caffeic acid on isoproterenol-treated myocardial infarction. Male albino Wistar rats were pretreated with caffeic acid (15 mg/kg) daily for 10 days. After the pretreatment, rats were injected with isoproterenol (100 mg/kg) at an interval
Although great achievements have been made in elucidating the molecular mechanisms contributing to acute myocardial ischemia/reperfusion (I/R) injury, an effective pharmacological therapy to protect cardiac tissues from serious damage associated with acute myocardial infarction, coronary arterial
BACKGROUND
Caffeic acid phenethyl ester (CAPE) has been shown to protect the heart against ischemia/reperfusion (I/R) injury by various mechanisms including its antioxidant effect. In this study, we evaluated the protective effects of a CAPE analog with more structural stability in plasma, caffeic
Myocardial ischemia-reperfusion (IR) causes widespread cardiomyocyte dysfunction, including apoptosis and necrosis. The present study aimed to investigate the possible cardioprotective effects of p-nitro caffeic acid phenethyl ester (CAPE-NO2) on myocardial IR-induced injury in vivo. To generate a
Cardiac mitochondrial dysfunction plays an important role in the pathology of myocardial infarction. The protective effects of caffeic acid on mitochondrial dysfunction in isoproterenol-induced myocardial infarction were studied in Wistar rats. Rats were pretreated with caffeic acid (15 mg/kg) for
OBJECTIVE
To investigate the effects of caffeic acid on early and delayed injuries after focal cerebral ischemia in rats, and the possible relation to 5-lipoxygenase inhibition.
METHODS
Transient focal cerebral ischemia was induced by middle cerebral artery occlusion in Sprague-Dawley rats. Caffeic
Atherosclerosis is a major macrovascular complication of diabetes that increases the risks for myocardial infarction, stroke, and other vascular diseases. The effect of a selective 5-lipoxygenase enzyme inhibitor; caffeic acid phenethyl ester (CAPE) on diabetes-induced atherosclerotic manifestations