Bosnian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

cinnamate/arabidopsis

Veza se sprema u međuspremnik
ČlanciKliničkim ispitivanjimaPatenti
Page 1 od 48 rezultati

Chemical Genetics Uncovers Novel Inhibitors of Lignification, Including p-Iodobenzoic Acid Targeting CINNAMATE-4-HYDROXYLASE.

Samo registrirani korisnici mogu prevoditi članke
Prijavite se / prijavite se
Plant secondary-thickened cell walls are characterized by the presence of lignin, a recalcitrant and hydrophobic polymer that provides mechanical strength and ensures long-distance water transport. Exactly the recalcitrance and hydrophobicity of lignin put a burden on the industrial processing

Functional Characterization of Cinnamate 4-hydroxylase from Helianthus annuus Linn Using a Fusion Protein Method

Samo registrirani korisnici mogu prevoditi članke
Prijavite se / prijavite se
Sunflower (Helianthus annuus L.) is an important oil crop, the secondary metabolites of it include many compounds such as flavonoids and lignin. However, the research on the biosynthesis of phenolic compounds in sunflowers is still scarce. Cinnamate 4-hydroxylase (C4H) belongs to the cytochrome

Molecular cloning of two genes encoding cinnamate 4-hydroxylase (C4H) from oilseed rape (Brassica napus).

Samo registrirani korisnici mogu prevoditi članke
Prijavite se / prijavite se
Cinnamate 4-hydroxylase (C4H) is a key enzyme of phenylpropanoid pathway, which synthesizes numerous secondary metabolites to participate in development and adaption. Two C4H isoforms, the 2192-bp BnC4H-1 and 2108-bp BnC4H-2, were cloned from oilseed rape (Brassica napus). They both have two introns

Isolation of a cDNA and a genomic clone encoding cinnamate 4-hydroxylase from Arabidopsis and its expression manner in planta.

Samo registrirani korisnici mogu prevoditi članke
Prijavite se / prijavite se
We have isolated a cDNA for a cytochrome P450, cinnamate 4-hydroxylase (C4H), of Arabidopsis thaliana using a C4H cDNA from mung been as a hybridization probe. The deduced amino acid sequence is 84.7% identical to that of mung bean C4H and therefore was designated CYP73A5. The CYP73A5 protein was
Microbial biocatalysis represents a promising alternative for the production of a variety of aromatic chemicals, where microorganisms are engineered to convert a renewable feedstock under mild production conditions into a valuable chemical building block. This study describes the rational

Cinnamate-4-hydroxylase expression in Arabidopsis. Regulation in response to development and the environment.

Samo registrirani korisnici mogu prevoditi članke
Prijavite se / prijavite se
Cinnamate-4-hydroxylase (C4H) is the first Cyt P450-dependent monooxygenase of the phenylpropanoid pathway. To study the expression of this gene in Arabidopsis thaliana, a C4H cDNA clone from the Arabidopsis expressed sequence tag database was identified and used to isolate its corresponding genomic

Mutations in the cinnamate 4-hydroxylase gene impact metabolism, growth and development in Arabidopsis.

Samo registrirani korisnici mogu prevoditi članke
Prijavite se / prijavite se
The initial reactions of the phenylpropanoid pathway convert phenylalanine to p-coumaroyl CoA, a branch point metabolite from which many phenylpropanoids are made. Although the second enzyme of this pathway, cinnamic acid 4-hydroxylase (C4H), is well characterized, a mutant for the gene encoding
CONCLUSIONS The gene coding for F5H from Eucalyptus globulus was cloned and used to transform an f5h -mutant of Arabidopsis thaliana , which was complemented, thus verifying the identity of the cloned gene. Coniferaldehyde 5-hydroxylase (F5H; EC 1.14.13) is a cytochrome P450-dependent monooxygenase

Ferulate-5-hydroxylase from Arabidopsis thaliana defines a new family of cytochrome P450-dependent monooxygenases.

Samo registrirani korisnici mogu prevoditi članke
Prijavite se / prijavite se
The fah1 mutant of Arabidopsis is defective in the accumulation of sinapic acid-derived metabolites, including the guaiacyl-syringyl lignin typical of angiosperms. Earlier results indicated that the FAH1 locus encodes ferulate-5-hydroxylase (F5H), a cytochrome P450-dependent monooxygenase (P450) of
We have investigated two NADPH-cytochrome (Cyt) P450 reductase isoforms encoded by separate genes (AR1 and AR2) in Arabidopsis thaliana. We isolated AR1 and AR2 cDNAs using a mung bean (Phaseolus aureus L.) NADPH-Cyt P450 reductase cDNA as a probe. The recombinant AR1 and AR2 proteins produced using
Cells contain various congeners of the canonical nucleotides. Some of these accumulate in cells under stress and may function as signal molecules. Their cellular levels are enzymatically controlled. Previously, we demonstrated a signaling function for diadenosine polyphosphates and cyclic
Despite extensive primary sequence diversity, crystal structures of several bacterial cytochrome P450 monooxygenases (P450s) and a single eukaryotic P450 indicate that these enzymes share a structural core of alpha-helices and beta-sheets and vary in the loop regions contacting individual
The Arabidopsis genome sequencing in 2000 gave to science the first blueprint of a vascular plant. Its successful completion also prompted the US National Science Foundation to launch the Arabidopsis 2010 initiative, the goal of which is to identify the function of each gene by 2010. In this study,

LNK1 and LNK2 Corepressors Interact with the MYB3 Transcription Factor in Phenylpropanoid Biosynthesis.

Samo registrirani korisnici mogu prevoditi članke
Prijavite se / prijavite se
Subgroup 4 of R2R3-MYB transcription factors consists of four members, MYB3, MYB4, MYB7, and MYB32, which possess the conserved EAR repression motif (pdLHLD/LLxiG/S) in their C termini. Here, we show that MYB3 is a newly identified repressor in Arabidopsis (Arabidopsis thaliana) phenylpropanoid

A systems biology view of responses to lignin biosynthesis perturbations in Arabidopsis.

Samo registrirani korisnici mogu prevoditi članke
Prijavite se / prijavite se
Lignin engineering is an attractive strategy to improve lignocellulosic biomass quality for processing to biofuels and other bio-based products. However, lignin engineering also results in profound metabolic consequences in the plant. We used a systems biology approach to study the plant's response
Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta naukom

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti naukom
  • Prepoznavanje biljaka po slici
  • Interaktivna GPS karta - označite bilje na lokaciji (uskoro)
  • Pročitajte naučne publikacije povezane sa vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoja interesovanja i budite u toku sa istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Sve informacije temelje se na objavljenim naučnim istraživanjima

Google Play badgeApp Store badge