Page 1 od 21 rezultati
The dried rhizomes of Cnidium officinale are used as herbal drugs in the treatment of pain, inflammation, menstrual disturbance and antivitamin deficiency disease, and also act as a blood pressure depressant. In addition, there are several reports suggesting that they have pharmacological properties
Osthole is found in Cnidium monnieri (L.) and has anti-inflammatory and anti-oxidative properties. It also inhibits the proliferation of hepatocellular carcinoma cells. This study aimed to evaluate the osthole suppressive nonalcoholic fatty liver disease effects in oleic acid (OA)-induced hepatic
BACKGROUND
Owing to their high volatile aroma, the dried rhizomes of Cnidium officinale (C. officinale) and Ligusticum chuanxiong (L. chuanxiong) are used as herbal drugs to treat blood pressure depressant, a deficiency disease of antivitamin, inhibition of small intestine sympathetic nerve and as
This study analyzed the antimicrobial, cytotoxic, and antioxidant properties of Cnidiumofficinale (CO) extracts to confirm their antimicrobial activity toward oral microorganisms. The control group contained 0 μg/mL of CO, and the experimental groups contained 50, 100, 150, and 200
Inflammatory reactions and oxidative stress are implicated in the pathogenesis of focal segmental glomerulosclerosis (FSGS), a common chronic kidney disease with relatively poor prognosis and unsatisfactory treatment regimens. Previously, we showed that osthole, a coumarin compound isolated from the
Nature has always proved to be a significant reservoir of bioactive scaffolds which have been used for the discovery of drugs since times. Medicinal plants continue to be a solid niche for biologically active and therapeutically effective chemical entities, opening up new avenues for the successful
Cnidium officinale Makino is an important medicinal plant of oriental clinics and is considered as the main source of phthalides, polyphenols, and flavonoids. However, there is no available report regarding the effect of different light colors on the secondary metabolites composition of C.
BACKGROUND
Antioxidants from natural resources possess multifaceted and importance of the activities provides substantial scope in neurodegenerative diseases. The aim of this study was to assess and compare the free radical scavenging activities of Cnidium officinale and Ligusticum chuanxiong, which
Osthole, a bioactive simple coumarin derivative extracted from a number of medicinal plants, such as Cnidium monnieri and Angelica pubescens, has been shown to exert a variety of pharmacological activities and is considered to have potential therapeutic applications. In this study, we investigated
Osthole, a coumarin compound isolated from the plant-derived herb Cnidium monnieri, has been the subject of considerable interest because of its broad spectrum of pharmacological properties. The aim of this study was to investigate the potential protective effects of osthole in adult rats in the
The aim of our study was to examine the therapeutic effect of osthole, an active constituent isolated from the fruit of Cnidium monnieri (L.) Cusson, on alcohol-induced fatty liver in mice and investigate its potential mechanisms of treatment. A mouse alcoholic fatty liver model was established by
Though Cnidium officinale Makino (COM) was known to have anti-angiogenic, anti-oxidant, neuroprotective, and anti-cancer effects, the underlying anticancer mechanism of COM using endoplasmic reticulum (ER) stress and miRNA remained unclear until now. Thus, in the current study, the inhibitory
Oxidative stress and blood-brain barrier (BBB) disruption play important roles in cerebral ischemic pathogenesis and may represent targets for treatment. Earlier studies have shown that osthole, a main active constituent isolated from Cnidium monnieri (L.) Cusson, could be considered as an
The fermentation of natural plants has a favorable effect on the functional and biological activities of living systems. These include anti-oxidative, anti-inflammatory, and anti-platelet aggregation activities. This is attributed to the chemical conversion of the parent plants to functional
BACKGROUND
The 1-methyl-4-phenylpyridinium ion (MPP(+)), an inhibitor of mitochondrial complex I, has been widely used as a neurotoxin because it causes a severe Parkinson's disease-like syndrome accompanied by increased levels of intracellular reactive oxygen species (ROS) and apoptotic death. In