Page 1 od 34 rezultati
Dengue virus is the causative agent of dengue fever, dengue hemorrhagic fever, and dengue shock syndrome. High rates of dengue virus replication and virion production are related to disease severity. To identify anti-DENV compounds, we performed cell-based ELISA testing to detect the level of DENV E
Approximately 500,000 people are hospitalized with severe dengue illness annually. Antibody-dependent enhancement (ADE) of dengue virus (DENV) infection is believed to contribute to the pathogenic cytokine storm described in severe dengue patients, but the precise signaling pathways contributing to
Dengue virus (DENV) currently circulates in more than 100 countries and causes an estimated 390 million infections per year. While most cases manifest as a self-resolving fever, ∼1.5% of infections develop into a more severe dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS), which causes
Dengue virus (DENV) and Zika virus (ZIKV) are mosquito-borne flaviviruses that cause severe illness after infection. Currently, there are no specific or effective treatments against DENV and ZIKV. Previous studies have shown that tyrosine kinase activities and signal transduction are involved in
Ribavirin and its 553 analogues have been docked with NS5-methyltransferase of Dengue viruses using Glide-HTVS and Glide-XP computational tools and the compounds have been screened based on their Glide-Gscores to identify lead ribavirin analogues that may act as inhibitors to the enzyme. Upon
Dengue fever is a rapidly spreading mosquito-borne virus infection, which remains a serious global public health problem. As there is no specific treatment or commercial vaccine available for effective control of the disease, the attempts on developing novel control strategies are underway. Viruses
We screened a siRNA library targeting human tyrosine kinases in Huh-7 cells and identified c-terminal Src kinase (Csk) as one of the kinases involved in dengue virus replication. Knock-down of Csk expression by siRNAs or inhibition of Csk by an inhibitor reduced dengue virus RNA levels but did not
Dengue virus nonstructural protein 1 (NS1) is expressed on the surface of infected cells and is a target of human antibody responses to dengue virus infection. We show here that dengue virus uses the cellular glycosyl-phosphatidylinositol (GPI) linkage pathway to express a GPI-anchored form of NS1
Viruses must evade the host innate defenses for replication and dengue is no exception. During secondary infection with a heterologous dengue virus (DENV) serotype, DENV is opsonized with sub- or nonneutralizing antibodies that enhance infection of monocytes, macrophages, and dendritic cells via the
BACKGROUND
Interleukin (IL)-10 levels are increased in dengue virus (DENV)-infected patients with severe disorders. A hypothetical intrinsic pathway has been proposed for the IL-10 response during antibody-dependent enhancement (ADE) of DENV infection; however, the mechanisms of IL-10 regulation
BACKGROUND
Plasma free amino acid patterns in health and disease have been reported. However, amino acid concentrations in adult populations in developing countries and in patients with dengue, as a model for an acute infectious viral disease endemic to the tropics, have not been
Permeability alterations of microvascular endothelia may be a factor in the plasma leakage produced by dengue virus infection. Confluent monolayers of the human dermal microvascular endothelial cell line HMEC-1 were utilized as an experimental model to study the cellular responses induced by the
The immunopathogenesis mechanism of dengue virus (DV) infection remains elusive. We previously showed that the target of DV in humans is dendritic cells (DCs), the primary sentinels of immune system. We also observed that despite the significant amount of IFN-alpha induced; DV particles remain
Platelet-leukocyte interactions amplify inflammatory reactions, but the underlying mechanism is still unclear. CLEC5A and CLEC2 are spleen tyrosine kinase (Syk)-coupled C-type lectin receptors, abundantly expressed by leukocytes and platelets, respectively. Whereas CLEC5A is a pattern recognition