Bosnian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

detox/soja

Veza se sprema u međuspremnik
ČlanciKliničkim ispitivanjimaPatenti
Page 1 od 33 rezultati
The phytotoxicity of formaldehyde for spider plants (Chlorophytum comosum L.), tobacco plants (Nicotiana tabacum L. cv Bel B and Bel W3), and soybean (Glycine max L.) cell-suspension cultures was found to be low enough to allow metabolic studies. Spider plant shoots were exposed to 7.1 [mu]L L-1

Characterization and functional analysis of a recombinant tau class glutathione transferase GmGSTU2-2 from Glycine max.

Samo registrirani korisnici mogu prevoditi članke
Prijavite se / prijavite se
The plant tau class glutathione transferases (GSTs) perform diverse catalytic as well as non-catalytic roles in detoxification of xenobiotics, prevention of oxidative damage and endogenous metabolism. In the present work, the tau class isoenzyme GSTU2-2 from Glycine max (GmGSTU2-2) was
Abiotic stress leads to the generation of reactive oxygen species (ROS) which further results in the production of reactive carbonyls (RCs) including methylglyoxal (MG). MG, an α, β-dicarbonyl aldehyde, is highly toxic to plants and the mechanism behind its detoxification is not well understood.
Cytosolic GSTs (glutathione transferases) are a multifunctional group of enzymes widely distributed in Nature and involved in cellular detoxification processes. The three-dimensional structure of GmGSTU4-4 (Glycine max GST Tau 4-4) complexed with GSH was determined by the molecular replacement
Glutathione transferases (GSTs) from the tau class (GSTU) are unique to plants and have important roles in stress tolerance and the detoxification of herbicides in crops and weeds. A fluorodifen-induced GST isoezyme (GmGSTU4-4) belonging to the tau class was purified from Glycine max by affinity
Cell suspension cultures of soybean (Glycine max L.) and wheat (Triticum aestivum L.) incorporated 2,4-dichlorophenoxyacetic acid (2,4-D) into a metabolite fraction which was insoluble in ethanol, water, and hot sodium dodecylsulphate. Further treatment with hot dimethylformamide solubilized a
BACKGROUND Glutathione transferases (GSTs, EC. 2.5.1.18) form a large group of multifunctional enzymes that are involved in the metabolism and inactivation of a wide range of endogenous and xenobiotic compound as well as in cell regulation and response to several biotic and abiotic

Structure of soybean β-cyanoalanine synthase and the molecular basis for cyanide detoxification in plants.

Samo registrirani korisnici mogu prevoditi članke
Prijavite se / prijavite se
Plants produce cyanide (CN-) during ethylene biosynthesis in the mitochondria and require β-cyanoalanine synthase (CAS) for CN- detoxification. Recent studies show that CAS is a member of the β-substituted alanine synthase (BSAS) family, which also includes the Cys biosynthesis enzyme O-acetylserine

Gene regulation of Sclerotinia sclerotiorum during infection of Glycine max: on the road to pathogenesis.

Samo registrirani korisnici mogu prevoditi članke
Prijavite se / prijavite se
Sclerotinia sclerotiorum is a broad-host range necrotrophic pathogen which is the causative agent of Sclerotinia stem rot (SSR), and a major disease of soybean (Glycine max). A time course transcriptomic analysis was performed in both compatible and incompatible soybean lines to

In-depth proteomic analysis of Glycine max seeds during controlled deterioration treatment reveals a shift in seed metabolism.

Samo registrirani korisnici mogu prevoditi članke
Prijavite se / prijavite se
Seed aging is one of the major events, affecting the overall quality of agricultural seeds. To analyze the effect of seed aging, soybean seeds were exposed to controlled deterioration treatment (CDT) for 3 and 7days, followed by their physiological, biochemical, and proteomic analyses. Seed proteins
Leaf senescence is the last stage of leaf development that re-mobilizes nutrients from the source to sink. Here, we have utilized the soybean as a model system to unravel senescence-associated proteins (SAPs). A comparative proteomics approach was used at two contrasting stages of leaf development,

Facile microwave-assisted synthesis of NiO nanoparticles and its effect on soybean (Glycine max).

Samo registrirani korisnici mogu prevoditi članke
Prijavite se / prijavite se
NiO nanoparticles in high purity, 15 ± 0.5 nm in size, were prepared via solid-state microwave irradiation. The [Ni(NH3)6](NO3)2 complex as a novel source was decomposed in the presence of microwave irradiation for a short time (10 min). The present method
The impact of SO(2) on superoxide dismutase (SOD) and the ascorbate-glutathione cycle was investigated in a tolerant (cv. Punjab-1) and a sensitive (cv. JS 7244) cultivar of soybean (Glycine max (L.) Merr.). In spite of SO(2) stimulated SOD activities in both the cultivars, only cv. JS 7244 has
The root cap and root border cells (RBCs) of most plant species produced pectinaceous mucilage, which can bind metal cations. In order to evaluate the potential role of root mucilage on aluminum (Al) resistance, two soybean cultivars differing in Al resistance were aeroponic cultured, the effects of

Decolorization and detoxification of Direct Blue 2B by indigenous bacterial consortium.

Samo registrirani korisnici mogu prevoditi članke
Prijavite se / prijavite se
Azo dyes are widely used in the textile industry despite being poorly biodegradable and highly toxic. Hence, azo dyes need to be removed from effluent prior to environmental discharge. Microbial communities are efficient for the degradation and mineralization of azo dyes. However, little is known
Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta naukom

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti naukom
  • Prepoznavanje biljaka po slici
  • Interaktivna GPS karta - označite bilje na lokaciji (uskoro)
  • Pročitajte naučne publikacije povezane sa vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoja interesovanja i budite u toku sa istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Sve informacije temelje se na objavljenim naučnim istraživanjima

Google Play badgeApp Store badge