Page 1 od 79 rezultati
The Arabidopsis FAD7 gene encodes a chloroplast omega-3 fatty acid desaturase that catalyzes the desaturation of lipid-linked dienoic fatty acids (18:2 and 16:2). An 825 bp FAD7 promoter fragment upstream from the transcriptional start point contained several short sequences which were homologous to
A cDNA was isolated from a tobacco (Nicotiana tabacum cv. SR1) leaf cDNA library using, as a hybridization probe, a cDNA fragment from the gene (fad7) encoding Arabidopsis thaliana chloroplast omega-3 fatty acid (FA) desaturase. The deduced 379-amino-acid (aa) sequence has 67-71% identity to those
Reconstitution of nonnative, very-long-chain polyunsaturated fatty acid (VLC-PUFA) biosynthetic pathways in Arabidopsis thaliana was undertaken. The introduction of three primary biosynthetic activities to cells requires the stable coexpression of multiple proteins within the same cell. Herein, we
Arabidopsis thaliana T-DNA transformants were screened for mutations affecting seed fatty acid composition. A mutant line was found with reduced levels of linolenic acid (18:3) due to a T-DNA insertion. Genomic DNA flanking the T-DNA insertion was used to obtain an Arabidopsis cDNA that encodes a
Previous genetic evidence suggested that the fad8 and fad7 genes of Arabidopsis thaliana encode chloroplast membrane-associated omega-3 desaturases. A putative fad8 cDNA was isolated by heterologous hybridization using a gene encoding an endoplasmic reticulum-localized omega-3 desaturase (fad3) as a
A common feature of the membrane lipids of higher plants is a large content of polyunsaturated fatty acids, which typically consist of dienoic and trienoic fatty acids. Two types of omega-3 fatty acid desaturase. which are present in the plastids and in the endoplasmic reticulum (ER), respectively,
We have isolated two maize cDNAs and the corresponding genes encoding fatty acid desaturase with Arabidopsis thaliana FAD7 gene as a probe. They shared almost 90% identity at DNA sequence level. Northern analysis revealed that both genes are expressed in leaves, but not in roots at normal
Arabidopsis thaliana seed maturation is accompanied by the deposition of storage oil, rich in the essential ω-3 polyunsaturated fatty acid α-linolenic acid (ALA). The synthesis of ALA is highly responsive to the level of fatty acid desaturase3 (FAD3) expression, which is strongly upregulated during
The increased production of trienoic fatty acids, hexadecatrienoic (16:3) and linolenic (18:3) acids, is a response connected with cold acclimation of higher plants and is thought to protect plant cells against cold damage. Transgenic tobacco (Nicotiana tabacum cv SR1) plants that contain increased
Mutations at the fad7 locus of Arabidopsis thaliana (previously called fadD) cause decreased desaturation of dienoic fatty acids in chloroplast lipids in plants grown at elevated temperatures. This suggested that the fad7 locus encodes a chloroplast omega-3 desaturase that catalyzes the desaturation
A new cold-inducible genetic construct was cloned using a chloroplast-specific omega-3-fatty acid desaturase gene (FAD7) under the control of a cold-inducible promoter (cor15a) from Arabidopsis thaliana. RT-PCR confirmed a marked increase in FAD7 expression, in young Nicotiana tabacum (cv. Havana)
A gene from the flowering plant Arabidopsis thaliana that encodes an omega-3 desaturase was cloned on the basis of the genetic map position of a mutation affecting membrane and storage lipid fatty acid composition. Yeast artificial chromosomes covering the genetic locus were identified and used to
Parsley (Petroselinum crispum) plants and suspension-cultured cells have been used extensively for studies of non-host-resistance mechanisms in plant/pathogen interactions. We now show that treatment of cultured parsley cells with a defined peptide elicitor of fungal origin causes rapid and large
We report the production of two very long chain polyunsaturated fatty acids, arachidonic acid (AA) and eicosapentaenoic acid (EPA), in substantial quantities in a higher plant. This was achieved using genes encoding enzymes participating in the omega3/6 Delta8 -desaturation biosynthetic pathways for
A wound-inducible Arabidopsis plastid omega-3 fatty acid desaturase (fad7) cDNA was obtained. Transgenic tobacco plants were produced by integration of the antisense fad7 DNA fragments under the control of a CaMV 35S promoter into the genome. Two transgenic T1 lines, AsFAD714 and 716, showed a