Page 1 od 24 rezultati
A mutant of Arabidopsis thaliana, deficient in the activity of a chloroplast omega9 fatty acid desaturase, accumulates high amounts of palmitic acid (16:0), and exhibits an overall reduction in the level of unsaturation of chloroplast lipids. Under standard conditions the altered membrane lipid
The overall fatty acid composition of leaf lipids in a mutant of Arabidopsis thaliana was characterized by elevated amounts of palmitic acid and a decreased amount of unsaturated 16-carbon fatty acids as a consequence of a single nuclear mutation. Quantitative analysis of the fatty acid composition
The overall fatty acid composition of leaf lipids in a mutant of Arabidopsis thaliana was characterized by an increased level of 16:0 and a concomitant decrease of 18-carbon fatty acids as a consequence of a single recessive nuclear mutation at the fab1 locus. Quantitative analysis of the fatty acid
Genes encoding an alpha-oxygenase, in Nicotiana tabacum and Arabidopsis thaliana, have been recently isolated. However, the reaction mechanism of the enzyme has not so far been elucidated. In this study, a cDNA encoding the fatty acid alpha-oxygenase gene in rice plants was isolated. The deduced
Chloroplasts mediate genetically controlled cell death via chloroplast-to-nucleus retrograde signaling. To decipher the mechanism, we examined chloroplast-linked lesion-mimic mutants of Arabidopsis thaliana deficient in plastid division, thereby developing gigantic chloroplasts (GC). These GC
Mutants of Arabidopsis thaliana were identified by screening pedigreed M3 seed collections from EMS-treated plants for changes in fatty acid (FA) composition. The FA phenotypes of the most dramatic mutants are as follows: G30 and 1E5 (allelic) lack linolenic acid (18∶3) and are elevated in linoleic
Paeonia ostii var. lishizhenii has been approved as a woody oil crop with the outstanding characteristic of abundant α-linolenic acid (C18:3, ALA) in its seed oil. The stearoyl-ACP desaturase gene (SAD) regulates the first key step from stearic acid (C18:0, SA) to oleic acid (C18:1, OA) in the ALA
This is the first report describing the cloning and characterization of sterol carrier protein-2 (SCP-2) from plants. Arabidopsis thaliana SCP-2 (AtSCP-2) consists of 123 amino acids with a molecular mass of 13.6 kDa. AtSCP-2 shows 35% identity and 56% similarity to the human SCP-2-like domain
Sterol carrier protein-2 (SCP-2) is a small intracellular basic protein domain implicated in peroxisomal beta-oxidation. We extend our knowledge of plant SCP-2 by characterizing SCP-2 from Euphorbia lagascae. This protein consists of 122 amino acids including a PTS1 peroxisomal targeting signal. It
The acyl-[acyl carrier protein]:sn-1-glycerol-3-phosphate acyltransferase (GPAT; E.C. 2.3.1.15) catalyzes the first step of glycerolipid assembly within the stroma of the chloroplast. In the present study, the sunflower (Helianthus annuus, L.) stromal GPAT was cloned, sequenced and characterized. We
Plant oilseeds are a major source of nutritional oils. Their fatty acid composition, especially the proportion of saturated and unsaturated fatty acids, has important effects on human health. Because intake of saturated fats is correlated with the incidence of cardiovascular disease and diabetes, a
Phospholipase A2s (PLA2s) are enzymes that liberate lysophospholipids and free fatty acids (FFAs) from membrane phospholipids in response to hormones and other external stimuli. This report describes the cloning and functional characterization of a PLA2 cDNA from Arabidopsis thaliana, AtsPLA2-alpha,
As the world population grows, the demand for food increases. Although vegetable oils provide an affordable and rich source of energy, the supply of vegetable oils available for human consumption is limited by the "fuel vs food" debate. To increase the nutritional value of vegetable oil, metabolic
2-Hydroxy fatty acids (2-HFAs) are predominantly present in sphingolipids and have important physicochemical and physiological functions in eukaryotic cells. Recent studies from our group demonstrated that sphingolipid fatty acid 2-hydroxylase (FAH) is required for the function of Arabidopsis
Coconut (Cocos nucifera L.) is a key tropical crop and a member of the monocotyledonous family Arecaceae (Palmaceae). Few genes and related metabolic processes involved in coconut endosperm development have been investigated. In this study, a new member of the WRI1 gene family was isolated from