Page 1 od 23 rezultati
Although many established tools for cytokinin (CK) pathway manipulations are well suitable for the analysis of molecular interactions, their use on a whole plant scale is often limited by the induction of severe developmental defects. To circumvent this problem, different methods were developed that
Phospholipid hydroperoxide glutathione peroxidase (PHGPx) is overexpressed in plants under abiotic and biotic stress conditions that mediate oxidative stress. To study its biological role and its ability to confer stress resistance in plants, we tried to obtain transgenic plants overexpressing
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a key glycolytic enzyme that plays important roles in multiple cellular processes including phytohormone signaling, plant development, and transcriptional regulation. Although GAPDH genes have been well characterized in various plant species
Pathogenesis-related proteins (PR proteins) play crucial roles in the plant defense system. A novel PRP gene was isolated from highly resistant soybean infected with Phytophthora sojae (P. sojae) and was named GmPRP (GenBank accession number: KM506762). The amino acid sequences of GmPRP showed
Over the last few years, the endophytic bacterial community associated with citrus has been studied as an important component interacting with Xylella fastidiosa, the causal agent of citrus variegated chlorosis (CVC). This bacterium may also colonize some model plants, such as Catharanthus roseus
Interest in phloem-specific promoters for the engineering of transgenic plants has been increasing in recent years. In this study we isolated two similar, but distinct, alleles of the Citrus sinensis sucrose synthase-1 promoter (CsSUS1p) and inserted them upstream of the β-glucuronidase (GUS) gene
Polyamine oxidases (PAOs) are FAD-dependent enzymes associated with polyamine catabolism. In plants, increasing evidences support that PAO genes play essential roles in abiotic and biotic stresses response. In this study, six putative PAO genes (CsPAO1-CsPAO6) were unraveled in sweet orange (Citrus
Chlorophyll is a central player in harvesting light energy for photosynthesis, yet the rate-limiting steps of chlorophyll catabolism and the regulation of the catabolic enzymes remain unresolved. To study the role and regulation of chlorophyllase (Chlase), the first enzyme of the chlorophyll
Chlorophyll degradation naturally occurs during plant senescence. However, in fruit such as citrus, it is a positive characteristic, as degreening is an important colour development contributing to fruit quality. In the present work, Citrus sinensis Osbeck, cv. Newhall fruit was used as a model for
Although the functions of carotenogenic genes are well documented, little is known about the mechanisms that regulate their expression, especially those genes involved in α - and β-branch carotenoid metabolism. In this study, an R2R3-MYB transcriptional factor (CrMYB68) that directly regulates the
Abscisic acid (ABA) is an important stress phytohormone that plays an essential role in mediating the signaling networks associated with plant responses to various abiotic stresses. In the present study, we isolated a gene CrNCED1 encoding the rate-limiting enzyme of ABA synthesis,
Citrus huanglongbing (HLB) is one of the most devastating diseases of citrus worldwide. The disease is associated with three different species of fastidious α-proteobacteria, namely 'Candidatus Liberibacter asiaticus', Ca. L. americanus, and Ca. L. africanus (1). 'Ca. L. asiaticus' was first
Citrus mosaic disease, a potential threat to citrus production throughout India, is currently an important disease in the southern and northeastern states (2). The reported incidence of the disease ranges from 10 to 77% (K. Gopal, G. S. Aparna, M. Sreenivasuluk, K. V. Subbaiah, and A. R. K. Rao,
Demotispa neivai Bondar (Coleoptera: Chrysomelidae) damage oil palm fruits, which makes it necessary to develop products to control this insect. The mortality, repellency, and antifeeding effects on adults of D. neivai of six plant extracts of Azadirachta indica A. Juss. (Sapindales: Meliaceae),
Several genes encoding putative glutathione peroxidase have been isolated from a variety of plants, all of which show the highest homology to the phospholipid hydroperoxide isoform. Several observations suggest that the proteins are involved in biotic and abiotic stress responses. Previous studies