8 rezultati
Potato virus X coat protein (PVXCP) is, through communication with host proteins, involved in processes such as virus movement and symptom development. Here, we report that PVXCP also interacts with the precursor of plastocyanin, a protein involved in photosynthesis, both in vitro and in vivo. Yeast
The functions of several small subunits of the large photosynthetic multiprotein complex PSI (Photosystem I) are not yet understood. To elucidate the function of the small plastome-encoded PsaJ subunit, we have produced knockout mutants by chloroplast transformation in tobacco (Nicotiana tabacum).
We investigated adaptive responses of the photosynthetic electron transport to a decline in the carbon assimilation capacity. Leaves of different ages from wild-type tobacco (Nicotiana tabacum) L. var Samsun NN and young mature leaves of tobacco transformants with impaired photoassimilate export
A monospecific antiserum to tobacco plastocyanin agglutinates stroma-free swellable chloroplasts from wild type tobacco, (Nicotiana tobacum var. John William's Broadleaf) from the tobacco aurea mutant Su/su2, (Nicotiana tabacum var. Su/su2) from Antirrhinum majus and spinach (Spinacia oleracea). In
PsaI is the only subunit of PSI whose precise physiological function has not yet been elucidated in higher plants. While PsaI is involved in PSI trimerization in cyanobacteria, trimerization was lost during the evolution of the eukaryotic PSI, and the entire PsaI side of PSI underwent major
A chemical male sterility system based on anther-localized conversion of the inactive D-enantiomer of the herbicide, glufosinate (2-amino-4-(methylphosphinyl)-butanoate) to the phytotoxic L is described. Highly pure D-glufosinate was isolated in >98% enantiomeric excess from the racemate via
The plastid-encoded psaJ gene encodes a hydrophobic low-molecular-mass subunit of photosystem I (PSI) containing one transmembrane helix. Homoplastomic transformants with an inactivated psaJ gene were devoid of PSI-J protein. The mutant plants were slightly smaller and paler than wild-type because
By recording leaf transmittance at 820 nm and quantifying the photon flux density of far red light (FRL) absorbed by long-wavelength chlorophylls of Photosystem I (PS I), the oxidation kinetics of electron carriers on the PS I donor side was mathematically analyzed in sunflower (Helianthus annuus