Page 1 od 1759 rezultati
Connexin 43 (Cx43) is a gap junction protein expressed in various tissues and organs of vertebrates. Besides functioning as a gap junction, Cx43 also regulates diverse cellular processes like cell growth and differentiation, cell migration, cell survival, etc. Cx43 is critical for normal cardiac
ATP-sensitive potassium channels (KATP) contribute to membrane currents in many tissues, are responsive to intracellular metabolism, and open as ATP falls and ADP rises. KATP channels are widely distributed in tissues and are prominently expressed in the heart. They have generally been observed in
BACKGROUND
Sevoflurane preconditioning improves recovery after hypoxia. Sevoflurane administered before and during hypoxia improved recovery and attenuated the changes in intracellular sodium, potassium, and adenosine triphosphate (ATP) levels during hypoxia. In this study, the authors examine the
We have investigated the action of the product of the enzyme NADPH oxidase; hydrogen peroxide (H2O2), on the first phase of the hypoxic contraction, prostaglandin F2 alpha (PGF2 alpha)-induced contractions and potassium chloride (KCl)-induced contractions, in isolated rat pulmonary arteries in a
1. Comparisons have been made between rabbit thoracic aorta and main pulmonary artery of the effects of hypoxia upon contractions evoked by noradrenaline (NA) and KCl (K+). 2. Contractions were evoked in cylindrical sections of pulmonary artery and aorta, mounted for isometric recording of tension,
For determination the ionic mechanisms of the hypoxic acclimatization at the level of channels, male Spradue-Dawley rats were divided into two groups: control normoxic group and chronic intermittent hypoxic group [O2 concentration: (10 +/-0.5)%, hypoxia 8 h a day]. Using whole cell patch-clamp
OBJECTIVE
The present study was to investigate the effects of acute hypoxia on the electrophysiological properties and outward current of spiral ganglion cell (SGC).
METHODS
SGC of newborn's Sprague Dawley (SD) rats were isolated and digested, primary cultured neurons for 8 h. By perfusion with
1. A brain slice preparation was used to study the hypoglossal (XII) neuronal response to anoxia. Both intra- and extracellular potassium activities (K+i,K+o) were measured by the use of ion-selective microelectrodes, and K+ flux was assessed by the use of pharmacologic blockers. 2. Extracellular
The aim of the present study was to examine the protective effect of proanthocyanidins anoxia-reoxygenation injury of myocardial cells and its association with phosphatidylinositol-3-kinase/Akt and glycogen synthase kinase (PI3K/Akt/GSK)-3β and ATP-sensitive potassium channels. Neonatal rat
Hypoxia contracts the pulmonary vein, but the underlying cellular effectors remain unclear. Utilizing contractile studies and whole cell patch-clamp electrophysiology, we report for the first time a hypoxia-sensitive K(+) current in porcine pulmonary vein smooth muscle cells (PVSMC). Hypoxia induced
Active oxygen species are generated in cells during pathophysiologic conditions such as inflammation and postischemic reperfusion. If oxygen radical scavengers are added before reperfusion, then the magnitude of injury is reduced. We investigated whether free radicals generated following exposure to
1. In anaesthetized rats, systemic hypoxia evoked hyperventilation, tachycardia, a fall in arterial pressure, vasodilatation in skeletal muscle and increases in K+ concentration measured in arterial plasma ([K+]a), venous efflux from muscle ([K+]v) and in right atrial plasma ([K+]at). The
ATP-sensitive potassium channels couple cell excitability to energy metabolism, thereby providing life-saving protection of stressed cardiomyocytes. The signaling for ATP-sensitive potassium channel expression is still unknown. We tested involvement of biochemical and biophysical parameters and
The presence and function of the ATP-sensitive potassium channel current (IKATP) were examined in the guinea pig myocardium to clarify the mechanisms for the resistance of the fetal myocardium to hypoxia. Experimental hypoxia markedly reduced the action potential duration and contractile
Age-related changes in the capacity of the brain to survive short anoxic episodes were studied in stratum pyramidale (region CA1) of hippocampal slices from control (6-7 months) and aged (26-27 months) rats. Our primary interest was in how aging affected the ability of slices to maintain or to