Page 1 od 70 rezultati
Background: Rosmarinic acid (RA) is a natural phenol carboxylic acid with many promising biological effects. It may be a suitable candidate for improving obesity-related adipose tissue dysfunction. Objective: We aimed to investigate the therapeutic use of RA as an anti-obesity agent by measuring its
BACKGROUND
Rosmarinic acid (RA), a major hydrosoluble bioactive compound found in the Chinese medicinal herb, Salvia miltiorrhiza Bunge, which has been used in traditional Chinese medicine to treat various diseases, including cancer. However, the mechanisms have not been fully
Mucoadhesive chitosan-coated nanoemulsions for rosmarinic acid (RA) nasal delivery were optimized. The optimum ratio between the formulation components that led to minimum droplet size and PDI, and maximal ζ-potential and RA content was obtained using Box-Behnken design (BBD). Optimized conditions
BACKGROUND
Rosmarinic acid is a phenolic compound widely distributed in Labiatae herbs such as rosemary, sweet basil, and perilla, which are frequently used with meat and fish dishes in Western and Asian countries. In the present study we investigated the effects of rosmarinic acid on cultured
Periodontitis is a chronic disease associated with inflammation of the tooth-supporting tissues. The inflammation is initiated by a group of gram-negative anaerobic bacteria. These express a number of irritating factors including a lipopolysaccharide (LPS), which plays a key role in periodontal
One of the major challenges for stem cell therapy of ischemic organs is that the transplanted cells are confronted with nutrient deficiency and oxidative stress. Previous studies have indicated that pretreatment of stem cells with cytoprotective phytochemicals improves their therapeutic potential.
1. Tumor necrosis factor (TNF)-alpha is known to induce the expression of CCL11 and CCR3 via the activation of NF-kappaB. CCL11 (eotaxin), the C-C chemokine, is a potent chemoattractant for eosinophils and Th2 lymphocytes, and CCR3 is the receptor for CCL11. 2. In order to determine the effects of
BACKGROUND
Inflammatory activation plays a vital role in the pathophysiological mechanisms of stroke, exerting deleterious effects on the progression of tissue damage and may lead to the vascular damage in diabetes. The objectives of this study were to determine the effects of rosmarinic acid (RA)
Lemon balm (Melissa officinalis L.) has many biological effects but especially important is its neuroprotective activity. The aim of the study is to produce different extracts of Melissa officinalis and analyse their chemical composition and biological properties on rat glioblastoma C6 cells.
Rosmarinic acid (RosmA) demonstrates antioxidant and anti-inflammatory properties. We investigated the effect of RosmA on liver ischemia/reperfusion injury. Rats were submitted to 60 min of ischemia plus saline or RosmA treatment (150 mg/kg BW intraperitoneally) followed by 6 h of reperfusion.
The endothelial protein C receptor (EPCR) plays pivotal roles in coagulation and inflammation, however, its activity is markedly changed by ectodomain cleavage and release as the soluble protein (sEPCR). According to previous studies, there are approximately 100ng/ml sEPCR in human plasma and the
BACKGROUND
Rosmarinic acid (RA) is a polyphenol present in members of the Lamiaceae family. In this study, yhe anti-inflammatory and anti-glycative effects of RA in the livers of type 1 diabetic mice were examined.
METHODS
The diabetic mice were divided into three groups: diabetic mice with 0, low
The purpose of our investigation is to evaluate the anti-arthritic potential of isolated rosmarinic acid from the rind of Punica granatum.Rosmarinic acid was isolated by bioactivity-guided isolation from butanolic fraction of Punica granatum and acute Rosmarinic acid (RA) has an anti-inflammatory property while thymic stromal lymphopoietin (TSLP) has an important role in mast cell-mediated inflammatory responses. Thus, the aim of this study was to determine the regulatory effect of RA in TSLP-stimulated human mast cell line, HMC-1 cells, and
BACKGROUND
Colon cancer is one of the most common cancers in both men and women. The present study is an effort to unravel the anticarcinogenic effects of rosmarinic acid (RA) in 1,2-dimethylhydrazine (DMH)-induced rat colon carcinogenesis. Administration of DMH induces multiple tumors in the rat