Page 1 od 138 rezultati
Photoreceptor cyclic nucleotide-gated (CNG) channels regulate Ca2+ influx in rod and cone photoreceptors. Mutations in cone CNG channel subunits CNGA3 and CNGB3 are associated with achromatopsia and cone dystrophies. Mice lacking functional cone CNG channel show endoplasmic reticulum (ER)
Mechanical ventilation (MV) is a life-saving intervention for patients in respiratory failure. However, prolonged MV causes the rapid development of diaphragm muscle atrophy, and diaphragmatic weakness may contribute to difficult weaning from MV. Therefore, developing a therapeutic countermeasure to
At extreme altitude, prolonged and severe hypoxia menaces human function and survival, and also associated with profound loss of muscle mass which results into a debilitating critical illness of skeletal muscle atrophy. Hypobaric hypoxia altered redox homeostasis and impaired calcium ion handling in
Contraction of skeletal muscle is triggered by the release of Ca2+ from the sarcoplasmic reticulum (SR) after depolarization of transverse tubules. The ryanodine receptor exists as a 'foot' protein in the junctional gap between the sarcoplasmic reticulum and the transverse tubule in skeletal muscle,
Unloading of skeletal muscles by hindlimb unweighting is known to induce muscle atrophy and a shift toward faster contractile properties associated with an increase in the expression of fast contractile proteins, particularly in slow soleus muscles. Contractile properties suggest that slow soleus
Skeletal muscle contraction is triggered by the release of Ca2+ from the sarcoplasmic reticulum through the type 1 ryanodine receptor (RyR1). Recently it has been shown that also the type 3 isoform of ryanodine receptor (RyR3), which is expressed in some mammalian skeletal muscles, may participate
It is generally believed that alterations of calcium homeostasis play a key role in skeletal muscle atrophy and degeneration observed in Duchenne's muscular dystrophy and mdx mice. Mechanical activity is also impaired in gastrointestinal muscles, but the cellular and molecular mechanisms of this
The photoreceptor cyclic nucleotide-gated (CNG) channel plays a pivotal role in phototransduction and cellular calcium homeostasis. Mutations in the cone photoreceptor CNG channel subunits CNGA3 and CNGB3 are associated with achromatopsia and cone dystrophies. CNG channel deficiency leads to
Neuroinflammation and degeneration of catecholaminergic brainstem nuclei occur early in neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Neuroinflammation increases levels of pro-inflammatory cytokines and reactive oxygen species which can alter neuronal calcium
The plant alkaloid ryanodine (Ry) is a high-affinity modulator of ryanodine receptor (RyR) Ca(2+) release channels. Although these channels are present in a variety of cell types, their functional role in nerve cells is still puzzling. Here, a monosubstituted fluorescent Ry analogue, B-FL-X Ry, was
Cardiac atrophy as a consequence of mechanical unloading develops following exposure to microgravity or prolonged bed rest. It also plays a central role in the reverse remodelling induced by left ventricular unloading in patients with heart failure. Surprisingly, the intracellular Ca(2+) transients
The DBA/2J (D2) and C57BL6 (B6) mouse strains are widely used in research as models for anxiety, addiction and chronic glaucoma. D2, but not B6, animals develop elevated intraocular pressure (IOP) that leads to progressive degeneration of retinal ganglion cell (RGC) axons and perikarya. Here we
We investigated the FKBP12 and ryanodine receptor (RyR) immunoreactivity (IR) in the spinal cords of neurological controls and patients with motor neuron disease (MND). In the neurological controls, the cytoplasm of the spinal anterior horn neurons was stained with anti-FKBP12 antibodies and
We have investigated the molecular basis of the Crooked Neck Dwarf (cn) mutation in embryonic chickens. Using biochemical and pharmacological techniques we are unable to detect normal alpha ryanodine receptor (RyR) protein in intact cn/cn skeletal muscle. Extremely low levels of alpha RyR