Page 1 od 26 rezultati
[structure: see text] Molecular clips functionalized by phosphonate or phosphate groups bind thiamine diphosphate (TPP) and S-adenosylmethionine (SAM) with high affinity in water; both sulfur-based cofactors transfer organic groups to biomolecules. For TPP, various analytical tools point toward a
The polyamines putrescine, spermidine and spermine are essential for normal growth and differentiation and the activity of the enzymes participating in their synthesis and catabolism are markedly modified in actively proliferating cells in vitro and in vivo. In some neoplastic cells a good
S-adenosylmethionine decarboxylase is a key enzyme in the biosynthesis of polyamines essential for cell proliferation. Overexpression of S-adenosylmethionine decarboxylase in rodent fibroblasts led to aggressive transformants (Amdc-s cells) that had unforeseen high invasive capacity in nude mice,
S-Adenosylmethionine (AdoMet) is involved in many biological processes as cofactor in enzymes transferring its sulfonium methyl group to various substrates. Additionally, it is used as drug and nutritional supplement to reduce the pain in osteoarthritis and against depression. Due to the biological
Mycobacterium leprae protein ML2640c belongs to a large family of conserved hypothetical proteins predominantly found in mycobacteria, some of them predicted as putative S-adenosylmethionine (AdoMet)-dependent methyltransferases (MTase). As part of a Structural Genomics initiative on conserved
S-adenosylmethionine decarboxylase (PfAdoMetDC) from Plasmodium falciparum is a prospective antimalarial drug target. The production of recombinant PfAdoMetDC for biochemical validation as a drug target is important. The production of PfAdoMetDC in Escherichia coli has been reported to result in
Coactivator-associated arginine methyltransferase 1 (CARM1) is a dual functional coregulator that facilitates transcription initiation by methylation of Arg(17) and Arg(26) of histone H3 and also dictates the subsequent coactivator complex disassembly by methylation of the steroid receptor
Polyamines are widespread distributed all over in living organisms. In Thalassiosira pseudonana 10 N-aminopropyl transferase like nucleotide sequences exists. It is assumed that these sequences are involved in the biomineralization of the diatom shell. The cDNA of the sequences were cloned,
Branched-chain polyamines are found exclusively in thermophilic bacteria and Euryarchaeota and play essential roles in survival at high temperatures. In the present study, kinetic analyses of a branched-chain polyamine synthase from the hyperthermophilic archaeon Thermococcus kodakarensis (Tk-BpsA)
BACKGROUND
Plasmodium falciparum is the most pathogenic of the human malaria parasite species and a major cause of death in Africa. It's resistance to most of the current drugs accentuates the pressing need for new chemotherapies. Polyamine metabolism of the parasite is distinct from the human
The crystal structure of the recombinant apo-form of glycine N-methyltransferase (GNMT) has been determined at 2.5 A resolution. GNMT is a tetrameric enzyme (monomer Mr = 32,423Da, 292 amino acids) that catalyzes the transfer of a methyl group from S-adenosylmethionine (AdoMet) to glycine with the
The contents of another loculus were separated in a pollen and tapetum fraction. The following enzymes involved in phenylpropanoid metabolism were present in the tapetum fraction: shikimate dehydrogenase; phenylalanine ammonialyase; cinnamic acid 4-hydroxylase; SAM (S-adenosylmethionine): caffeate
Most of the transmethylation reactions use the same methyl donor, S-adenosylmethionine (SAM), that is synthesised from methionine and ATP by methionine adenosyltransferase (MAT). In mammals, two MAT enzymes have been detected, one ubiquitous and another liver specific. The liver enzyme exists in two
BchU plays a role in bacteriochlorophyll c biosynthesis by catalyzing methylation at the C-20 position of cyclic tetrapyrrole chlorin using S-adenosylmethionine (SAM) as a methyl source. This methylation causes red-shifts of the electronic absorption spectrum of the light-harvesting pigment,
A model of the active site of aminopropyltransferases was proposed based on the study of a number of monoamino and diamino compounds as potential inhibitors and substrates, respectively, of spermidine synthase purified from pig liver. The active site seems to have a relatively large hydrophobic