14 rezultati
In the present study, the effects of insulin and contraction on glycogen synthase (GS) kinetic properties and phosphorylation were investigated in epitrochlearis muscles from lean and obese Zucker rats. Total GS activity and protein expression were ~15% lower in epitrochlearis from obese rats
Insulin stimulates glycogen synthase (GS) through dephosphorylation of serine residues, and this effect is impaired in skeletal muscle from insulin-resistant [obese and type 2 diabetic (T2DM)] subjects. Exercise also increases GS activity, yet it is not known whether the ability of exercise to
GPR105, a G protein-coupled receptor for UDP-glucose, is highly expressed in several human tissues and participates in the innate immune response. Because inflammation has been implicated as a key initial trigger for type 2 diabetes, we hypothesized that GPR105 (official gene name: P2RY14) might
The inability to coordinate cellular metabolic processes with the cellular and organismal nutrient environment leads to a variety of disorders, including diabetes and obesity. Nutrient-sensing protein kinases, such as AMPK and mTOR, play a pivotal role in metabolic regulation and are promising
Lithium's impact on glucose metabolism was compared with that of insulin in isolated rat soleus muscle. Lithium chloride (20 mmol/l) induced a 4.8-fold more pronounced increment over basal glycogen synthase activity than insulin (10 nmol/l) (nmol UDP-glucose into glycogen in synthase activity
Animal studies suggest that overactivity of the hexosamine pathway, resulting in increased UDP-hexosamines [UDP-N-acetylglucosamine (UDP-GlcNAc) and UDP-N-acetylgalactosamine (UDP-GalNAc)] is an important mechanism by which hyperglycemia causes insulin resistance. This study was performed to test
It has been proposed that the hexosamine pathway acts as a nutrient-sensing pathway, protecting the cell against abundant fuel supply, and that accumulation of hexosamines represents a biochemical mechanism by which hyperglycemia and hyperlipidemia induce insulin resistance. We hypothesized that if
OBJECTIVE
The deuterated water method uses the ratio of deuterium on carbons 5 and 2 (C5/C2) or 3 and 2 (C3/C2) to estimate the fraction of glucose derived from gluconeogenesis. The current studies determined whether C3 and C5 glucose enrichment is influenced by processes other than
Epigenetic changes in response to external stimuli are fast emerging as common underlying causes for the pre-disposition to adult disease. Prenatal androgenization is one such model that results in reproductive and metabolic features that are present in conditions such as polycystic ovary syndrome
Recent in vivo studies have demonstrated a strong negative correlation between liver triglyceride content and hepatic insulin sensitivity, but a causal relationship remains to be established. We therefore have examined parameters of direct hepatic insulin action on isolated steatotic livers from
Natural killer T (NKT) cells in adipose tissue (AT) contribute to whole body energy homeostasis.Inhibition of the glucosylceramide synthesis in adipocytes impairs iNKT cell activity.Glucosylceramide biosynthesis pathway is BACKGROUND
The aim of this study was an in vitro investigation of the effect of high glucose concentration on adipogenesis, as prolonged hyperglycemia alters adipocyte differentiation.
METHODS
3T3-L1 preadipocytes differentiated in the presence of varying concentrations of glucose (25, 45, 65, 85,
Anthocyanins are red, purple, or blue plant water-soluble pigments. In the past two decades, anthocyanins have received extensive studies for their anti-oxidative, anti-inflammatory, anti-cancer, anti-obesity, anti-diabetic, and cardioprotective properties. In the present study, anthocyanin
Information about normal hepatic glucose metabolism may help to understand pathogenic mechanisms underlying obesity and diabetes mellitus. In addition, liver glucose metabolism is involved in glycosylation reactions and connected with fatty acid metabolism. The liver receives dietary carbohydrates