Page 1 od 57 rezultati
UDP-glucose pyrophosphorylase from potato tuber was purified 243-fold to a nearly homogeneous state with a recovery of 30%. The purified enzyme utilized UDP-glucose, but not ADP-glucose, as the substrate, and was not activated by 3-phosphoglyceric acid. Product inhibition studies revealed the
The organization of the gene encoding potato UDP-glucose pyrophosphorylase, one of the key enzymes of carbohydrate metabolic pathway is presented. The gene cloned from cultivar (cv.) Lemhi consists of a 6.6-kb structural and a 1-kb regulatory region. The structural region contains 20 exons and 19
Potato tuber UDP-glucose pyrophosphorylase (EC 2.7.7.9) catalyzes the reversible uridylyl transfer from UDP-glucose to MgPPi forming glucose 1-phosphate and MgUTP, according to an ordered bi-bi mechanism in which UDP-glucose and MgPPi bind in this order. To probe the active site of this enzyme, we
Solanidine UDP-glucose glucosyltransferase (SGT) is involved in the biosynthesis of steroidal glycoalkaloids in potatoes. This enzyme is present at an extremely low level, is inherently unstable, and copurifies with the major storage protein patatin during isolation. We describe an improved method
We report the sequence of a 12,399 bp DNA fragment from the left arm of Saccharomyces cerevisiae chromosome XI. This fragment is located between the genetic loci mif2 and mak11. We have detected five new open reading frames (ORFs) longer than 300 bp provisionally called YKL248 to YKL252. One of
Uridine di- and triphosphopyridoxals were used to probe the substrate-binding site in potato tuber UDP-glucose pyrophosphorylase (EC 2.7.7.9). The enzyme was rapidly inactivated in time- and dose-dependent manners when incubated with either reagent followed by reduction with sodium borohydride. The
The entire structural gene for potato tuber UDP-glucose pyrophosphorylase has been amplified from its cDNA by the polymerase chain reaction and inserted into the expression plasmid pTV118-N downstream from the lac promoter. Escherichia coli JM105 cells carrying thus constructed plasmid produced the
We have isolated a cDNA encoding UDP-glucose pyrophosphorylase from a cDNA library of immature potato tuber using oligonucleotide probes synthesized on the basis of partial amino acid sequences of the enzyme. The cDNA clone contained a 1,758-base-pair insert including the complete message for
The ADP-glucose- or UDP-glucose-specific starch synthetase bound to sweet-potato (Ipomoea batatas) starch granules is localized in the granules, and the UDP-glucose-specific enzyme was solubulized by urea/pullulanase treatment of the starch granules.
Changes in ADP-glucose and UDP-glucose pyrophosphorylase activities were followed during tuber development of Solanum tuberosum and prolonged storage at 4 and 11 C. Potato tuberization was accompanied by a sharp increase in starch synthesis simultaneous with a marked rise in ADP-glucose
Pyrophosphorylytic kinetic constants (S(0.5), V(max)) of partially purified UDP-glucose- and ADP-glucose pyrophosphorylases from potato tubers were determined in the presence of various intermediary metabolites. The S(0.5) of UDP-glucose pyrophosphorylase for UDP-glucose (0.17 millimolar) or
The enzyme UDP-glucose pyrophosphorylase (UGPase) from potato (Solanum tuberosum L. cv Norchip) tubers was purified 177-fold to near homogeneity and to a specific activity of 1099 international units/mg of protein. The molecular mass of the purified enzyme was 53 kD as determined by SDS-PAGE and gel
UDP-glucose pyrophosphorylase (UGPase) was cloned from six American and nine European potato (Solanum tuberosum L.) cultivars. Restriction mapping of the different UGPase-cDNAs with BamHI, HindIII, and EcoRI revealed that at least two mRNA populations were present in most cultivars. Staining for
In anthocyanin biosynthesis, UDP-glucose: anthocyanidin 3-O-glucosyltransferase (UFGT) catalyzes the transfer of the glucosyl moiety from UDP-glucose to the 3-hydroxyl group of anthocyanidins, producing the first stable anthocyanins. The full-length cDNA of UFGT (designated as StUFGT) was isolated
By using two reactive analogues of UDP-Glc, uridine di- and triphosphopyridoxals, we have recently probed the substrate-binding site in potato tuber UDP-Glc pyrophosphorylase [EC 2.7.7.9]. In this work, pyridoxal diphospho-alpha-D-glucose was used for the same purpose. This compound is also a